Brief introduction of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 3-(2,3-dimethoxy-5-(methoxymethyl)phenyl)- 4,4-dimethylpent-1-yn-3-ol (1.5 eq., 0.263 g, 0.9 mmol) were added in 4 ml HClldioxane solution (0.15 molIl). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a orange powder; 0.31 g (Yield: 80 %). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 652.09., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

In the Schlenk flask, 20 mg (0.17 mmol) of tzdtH was dissolved in60 mL of ethanol. To this, 60 mL of CH2Cl2 containing 30 muL of Et3N followedby 70 mg of [RuCl2(PPh3)3] reactant were added. After stirring for30 min, under room temperature, colormixture changed froma brownishto a yellowish suspension. Solvent was removed under reduced pressureand the yellowish solid was filtered andwashedwith ethanol and diethylether and then dried under vacuum to yield 50 mg (79%). Anal. Calc. for[RuC42H38N2S4P2].H2O:exp. (calc) 57.76 (57.91); H, 4.22 (4.51); N, 3.33 (3.22); S, 15.17 (14.73) %. Molar conductance (S cm2 mol-1,CH2Cl2) 1.8. IR (cm-1) (upsilonC-H) 3072, 3049, 2947, 2928; (upsilonCH2) 2849;(upsilonCN) 1527; 1508; (nuCC(ring) + nuCC(dppb)) 1479, 1385; (upsilonC-S) 1188;(upsilonC-P) 1088; (nuring) 1045, 993; (gammaCS) 750; (gammaring) 696; (upsilonRu-P) 520;(upsilonRu-S) 497; (upsilonRu-N) 435. 31P{1H} NMR (162 MHz, CDCl3, 298 K): delta(ppm) 54.2 (s); 1H NMR (400 MHz, CDCl3, 298 K): delta (ppm): 7.32 (12H,m, Ho of PPh3); 7.23 (6H, t, Hp of PPh3); 7.10 (12H, t, Hm of PPh3); 3.27(2H, ddd, CH2 of tzdt); 3.20 (2H, dd, CH2 of tzdt); 2.94 (2H, ddd, CH2 oftzdt); 2.65 (2H, dd, CH2 of tzdt). 13C{1H} NMR (125.74 MHz, CDCl3,298 K): delta (ppm) 181.88 (CS); 137.33-127.09 (36C, C-PPh3); 56.49 (2C,CH2-N of tzdt) and 31.72 (2C, CH2-S of tzdt). UV-vis (CH2Cl2,4 ¡Á 10-5 M): lambda/nm (epsilon/M-1 cm-1) 310 (1993).

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Correa, Rodrigo S.; Da Silva, Monize M.; Graminha, Angelica E.; Meira, Cassio S.; Dos Santos, Jamyle A.F.; Moreira, Diogo R.M.; Soares, Milena B.P.; Von Poelhsitz, Gustavo; Castellano, Eduardo E.; Bloch, Carlos; Cominetti, Marcia R.; Batista, Alzir A.; Journal of Inorganic Biochemistry; vol. 156; (2016); p. 153 – 163;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Solid [Ru(PPh3)3Cl2] (200 mg, 0.21 mmol) was added to a methanol solution (30 ml) of H2L1 (153 mg, 0.42 mmol) and NaOAc(35 mg, 0.42 mmol). The mixture was boiled under reflux for 1 h and then cooled to room temperature. The red solid deposited was collected by filtration and dried in air. This material was dissolved in minimum amount of dichloromethane and transferred to a silica gel column packed with dichloromethane. The first yellow band moved with the eluent 1 : 4 mixture of dichloromethane/ n-hexane was discarded. The following red band containing the complex 1 was eluted with a 2 : 3 mixture of dichloromethane/ n-hexane. The red solution thus obtained was evaporated to dryness and the complex was collected as a dark red solid. The yield was 220 mg (78 %)., 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Nagaraju, Koppanathi; Pal, Samudranil; Inorganica Chimica Acta; vol. 413; (2014); p. 102 – 108;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-2,6-dimethylphenyl-1-phenyl-prop-2-yn-1-ol (compound D, 1.5 eq., 0.213 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.50 g (Yield: 90%). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 629.64.

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diisopropylphosphineaniline,1.8 mmol of m-chlorobenzyl alcohol, 1 mmol of o-dicyclohexylphosphine benzene, 1 mmol of RuCl2 (PPh3) 3, 1.2 mmol of sodium hydroxide, 20 ml of dioxane and heating at 110 C. for 12 h under a nitrogen atmosphere, After filtration, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 12 in a yield of 82%.

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

Wilkinson prepared cis-RuCl2(PPh3)2(NCPh)2 by the reaction of RuCl2(PPh3)3 with NCPh in acetone and characterized it by elemental analysis and infrared spectroscopy [1]. In our hands this compound can also be obtained by the reaction in toluene. A 0.099 g (0.10 mmol) sample of RuCl2(PPh3)3 was added to 0.032 mL (0.033 g, 0.32 mmol) of NCPh in 2 mL toluene. The resulting mixture was stirred rapidly for several seconds and immediately filtered. After 3-6 h at room temperature yellow crystals began to form. After about 24 h the supernatant was removed and the yellow crystalline RuCl2(PPh3)2(NCPh)2 was dried under vacuum to yield 0.093 g (0.10 mmol, 100%) of RuCl2(PPh3)2(C7H5N)2, m.p. = 186.5-187.9 C (dec), IR(KBr (cm-1): 3052 m, 2240 m, 2230 m, 2216 m, 1431 s, 1259 w, 1085 m, 1023 w, 740 s, 692 s, 512. 31P NMR (CDCl3): 25.6 s. X-ray quality crystals were obtained from a similar reaction that took place in an NMR tube in d-toluene.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Cruz, Santina S.; Amenta, Donna S.; Gilje, John W.; Yap, Glenn P.A.; Polyhedron; vol. 114; (2016); p. 179 – 183;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of ONS-LH (486mg, 2.0mmol) in THF (20mL) was added [Ru(PPh3)3Cl2] (868mg, 2.0mmol), which was then stirred under N2 for 15min. Triethylamine (Et3N) (202mg, 2.0mmol) was introduced, and the reaction mixture was stirred overnight at room temperature, during which the color of solution changed from brown to dark red brown. After removal of solvents in vacuo, CH2Cl2 (20mL) was added and the solution was filtered. The filtrate was concentrated and the residue was washed with Et2O (5mL¡Á2) and hexane (5mL¡Á2) to give the desired product. Recrystallization from MeOH/ Et2O (1:3) afforded dark red block crystals of 1¡¤0.5CH3OH¡¤2.75H2O suitable for X-ray diffraction in five days. Yield: 1.19g, 63% (based on Ru). IR (KBr disc, cm-1): 1597 (nuC=N), 1311 (nuC-O), 739 (nuC-S), 1432, 1087 and 691 (nuPPh3); 31P NMR (CDCl3, 162MHz): delta 16.4 (s, PPh3), 14.7 (s, PPh3) ppm. 1H NMR (CDCl3, 400MHz): delta 8.81 (s, 1H, CH=N), 7.98-7.31 (m, 4H, Ar-H), 7.23-7.06 (m, 4H, Ar-H), 6.75-7.01 (m, 30H, PPh3), 2.39 (s, 3H, SCH3) ppm. MS (FAB): m/z 903 [M+], 868 [M+-Cl], 641 [M+-PPh3], 379 [M+-2PPh3], 344 [Ru(ONS-L)]+. Anal. Calc. for C50H42NOP2ClSRu¡¤0.5(CH4O)¡¤2.75(H2O) (%): C, 64.74; H, 4.98; N, 1.48. Found: C, 64.67; H, 5.03; N, 1.43

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wang, Chang-Jiu; Lin, Hui; Chen, Xin; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 467; (2017); p. 198 – 203;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of [RuCl2(PPh3)3] (50 mg, 0.052 mmol) and bipy (10mg, 0.06 mmol) were charged in a two necked round bottomed flask and kept under vacuum for 15 min. 20 mL of dry acetone was then added and the brown mixture was stirred under argon atmosphere for approximately 30 min. A light yellowish-brown solid was precipitated that was filtered off, washed with diethylether (2 5 mL) and subsequently dried in vacuo. Yield: 90 %(40 mg). UV-Vis (e, Mu1 cm1): kmax (CH2Cl2) = 490 (5370), 350(9640).

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zacharopoulos, Nikolaos; Kolovou, Evgenia; Peppas, Anastasios; Koukoulakis, Konstantinos; Bakeas, Evangelos; Schnakenburg, Gregor; Philippopoulos, Athanassios I.; Polyhedron; vol. 154; (2018); p. 27 – 38;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI