Brief introduction of 301224-40-8

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.301224-40-8,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,as a common compound, the synthetic route is as follows.

C765 was synthesized according to the procedure described in US 2014/0371454. C765 was isolated as red/brown crystals in 97.1% yield

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; JOHNS, Adam, M.; MONTGOMERY, T., Patric; AHMED, Tonia, S.; GRUBBS, Robert, H.; PEDERSON, Richard, L.; (95 pag.)WO2017/100585; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 301224-40-8

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

cis-RuC12(slMes)(CHC6H4O1-Pr)(Ph2P(OMe)), cis-C843: C627 (35.0 g, 56 mmol) was dissolved in degassed CH2C12 (2000 mL) in an 1-neck round-bottomed flask under nitrogen, to which methyl diphenylphosphinite (50 g, 231 mmol) was syringed. The flask was connected to a Friedrich condenser, which was in turn attached to vacuum/nitrogen line. The mixture was degassed by vacuum/nitrogen 3-times. An oil bath was used to heat the flask. The oil bath temperature was kept at 50 C for 40 h and then cooled to room temperature. The solvent was removed under high vacuum. The residue was dissolved in a minimum amount of CH2C12 and loaded on top of Si02 gel column (4 x 3 in, D x H) and eluted with CH2C12. A red band which stuck on column was rinsed down by methanol. The solvent was removed by rotary evaporator and a green solid was obtained. The solid was further purified by recrystallization from CH2C12 /Hexanes. Yield: 15 g (32%). ?H NMR (400 MHz, C6D6, ppm): oe 16.45 (d, J = 24 Hz, RuCH, 1H), 10.11 (dd, J = 8 Hz, J = 2Hz, 1H), 7.55 (t, J = 9Hz, 2H), 7.20 (ddd, J = 9Hz, J = 7 Hz, J = 2 Hz, 1H), 7.000 (m, 3H), 6.87 (dt, J = 2 Hz, J = 8 Hz, 2H), 6.79 (t, J = 8 Hz, 1H), 6.75 – 6.65 (m, 3H), 6.61 (d, J = 10Hz), 6.20 (m, 2H), 4.11 (septet, J = 6Hz, -OCHIVIe2, 1H), 3.50-3.06 (m, 4H),3.38 (d, J = 10Hz, -OCH3, 3H), 2.92 (s, 3H), 2.51 (s, 3H), 2.45 (s, 3H), 2.33 (s, 3H), 1.95 (s, 3H),1.91 (s, 3H), 1.25 (d, J = 6Hz, 3H, OCH(CH3)(CH3), 3H), 0.97 (d, J = 6Hz, 3H, OCH(CH3)(CH3), 3H). 3?P NMR (162 MHz, C6D6, ppm): oe 140.9 (b).

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; MATERIA, INC.; GIARDELLO, Michael, A.; TRIMMER, Mark, S.; WANG, Li-Sheng; DUFFY, Noah, H.; JOHNS, Adam, M.; RODAK, Nicholas, J.; FIAMENGO, Bryan, A.; PHILLIPS, John, H.; (127 pag.)WO2017/53690; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Hoveyda-Grubbs 2nd generation catalyst (19mg; 0.03mmol) was added to a solution of dien 7 (100mg; 0.31mmol) and styrene (2.48mmol) in dichloroethane (5mL). The reaction mixture was heated at 80C for 5h. Then, another portion of H-G catalyst (19mg; 0.03mmol) was added and the reaction mixture was heated at 80C for additional 5h. Then, the solvent was evaporated and crude solid was purified by column chromatography on silica gel (mobile phase – 3% ethyl acetate in cyclohexane, Rf of products 0.18-0.25). In some cases, stated in each experiment, HPLC had to be used due to very close retention time of product and starting material (mobile phase – 0.5% ethyl acetate in cyclohexane).

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Korinkova, Petra; Bazgier, Vaclav; Oklestkova, Jana; Rarova, Lucie; Strnad, Miroslav; Kvasnica, Miroslav; Steroids; vol. 127; (2017); p. 46 – 55;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 301224-40-8

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

HII 65 HII (200mg) and P(0’Pr)3 (5eq) were stirred in for 72h. The crude 65 was recrystallised from DCM/pentane. (400MHz, 298K): 16.05 (d, 1 H, J = 35.3 Hz, C=CH), 10.24 (d, 1 H, J = 9.7 Hz, Ph-H), 6.87-6.83 (m, 2H, Ph-H), 6.78 (s, 1 H, Ph-H), 6.61 (s, 1 H, Ph-H), 6.19-6.16 (m, 2H, Ph- H), 4.67 (brs, 2H, PO-CH-CH3), 4.09-4.06 (m, 1 H, Ph-0-CH-CH3), 4.04 (brs, 1 H, PO- CH-CH3), 3.43-3.40 (m, 1 H), 3.16-3.02 (m, 3H), 2.89 (s, 3H, Mes-CH3), 2.58 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.18 (s, 3H, CH3), 1.92 (s, 3H, CH3), 1.48- 0.80 (m, 24H, PO-CH-CH3).31P{1H} (121.49MHz, 298K): 128.7 (s)

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS; CAZIN, Catherine; WO2011/117571; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 301224-40-8

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.301224-40-8,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,as a common compound, the synthetic route is as follows.

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 301224-40-8

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a Schlenk flask the corresponding starting material (1 equiv)was dissolved in degassed CH2Cl2. 5,7-Dihalide-8-hydroxyquinoline(20 equiv) and Cs2CO3 (20 equiv) were added. Thereaction mixture was stirred under an atmosphere of argon for12 h at 25 C. Insoluble components were removed by filtrationover celite. Column chromatography (silica gel) using cyclohexane/ethylacetate = 10/1 (v/v) yielded the correspondingcomplexes. The synthesis of the following Ru-based complexesbelongs to a patent application [63].

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

Reference£º
Article; Wappel, Julia; Fischer, Roland C.; Cavallo, Luigi; Slugovc, Christian; Poater, Albert; Beilstein Journal of Organic Chemistry; vol. 12; (2016); p. 154 – 165;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.301224-40-8,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,as a common compound, the synthetic route is as follows.

Hoveyda-Grubbs second generation catalyst H2 (104 mg, 0.16 mmol) and potassium 2,6-dimethylbenzenethiolate (34 mg, 0.19 mmol) 2b were transferred to a 25 mL Schlenk flask, followed by addition of 4 mL of toluene and 1 mL THF under argon. Then the mixture was stirred vigorously at 20 C. for 30 min. During this time the color of the mixture turned from light green to a slightly darker green. The reaction mixture was filtered, and the volume of the filtrate reduced to about 3 mL. Hexane (15 mL) was added to the filtrate to precipitate the product 4b as red/orange-brown micro-crystals (86.3 mg, 71%). (0121) Crystals for X-ray diffraction analysis (see FIG. 12 and Table 4) were prepared by dissolving a sample in a minimal amount of toluene, upon which a layer of hexane was added. Red-brown crystals were formed over a period of 3 days at room temperature. (0122) 1H NMR (400.13 MHz, CDCl3): delta=14.90 (s, 1H), 7.22 (m, 1H), 7.10 (s, 2H), 7.06 (s, 2H), 6.80-6.73 (m, 2H), 6.66 (t, J=7.2 Hz, 1H), 6.16 (d, J=8.0 Hz, 1H), 4.15 (m, 4H), 3.83 (sep, J=6.16 Hz, 1H), 2.62 (s, 6H), 2.54 (s, 6H), 2.42 (s, 6H), 2.32 (br s, 3H), 1.8 (d, J=5.6 Hz, 3H), 0.89 (d, J=6.4 Hz, 3H), 0.80 (br s, 3H). 13C NMR (100.6 MHz, CDCl3): delta=271.29, 211.87, 151.57, 145.12, 142.30 (br), 141.67, 139.25, 138.90, 138.75, 137.40 (br), 129.74, 129.43, 127.32, 126.61, 124.43, 123.12, 122.34, 114.19, 74.99, 52.15, 21.55, 21.45, 21.43, 20.07 (br). (0123) A corresponding ORTEP-style diagram of 4b is shown in FIG. 12. Selected geometrical parameters: Ru1-C9=1.846 , Ru1-S1=2.285 , Ru1-Cl1=2.364 , Ru1-O1=2.298 , Ru1-S1-C1=113.67, Cl1-Ru1-S1=150.75.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bergen Teknologioverforing AS; Jensen, Vidar R.; Occhipinti, Giovanni; Hansen, Frederick Rosberg; US8716488; (2014); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 301224-40-8

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A mixture of fluorinated acid silver salt 6 (2.2eq.) and dichlororuthenium(IV) complex 5 (1.0eq.) was first dried under vacuum (13Pa) at room temperature for 1h. Dry dichloromethane (5mL) was added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off and washed with dry dichloromethane (2mL). Evaporation of the solvent afforded the product 7-9.

As the paragraph descriping shows that 301224-40-8 is playing an increasingly important role.

Reference£º
Article; Babun?k, Mario; ?im?nek, Ond?ej; Ho?ek, Jan; Ryba?kova, Marketa; Cva?ka, Josef; B?ezinova, Anna; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 161; (2014); p. 66 – 75;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Complex 16 (125 mg, 0.200 mmol, which was prepared from Hoveyda-Grubbs first generation catalyst 15according to literature procedure (31), was dissolved in THF (4 ml) and potassium 2,4,6-triphenylthiophenolate 2a (78mg 0.200 mmol) was added as a solid in small portions. Residual reactant was transferred into the reaction mixture asa solution/suspension in THF (1 ml). The mixture was stirred for 4 h before all volatiles were removed under reducedpressure. The solid green residue was extracted with toluene (4×1 ml), and the green solution filtered and dried in vacuumleaving a green solid 208 mg). 1H-NMR showed the presence of toluene that could not be removed in vacuum. Thereforethe target compound was treated repeatedly with DCM/pentane followed by drying in vacuum, reducing the mass to0.185 mg. The residual was dissolved in 0.5 mL CH2Cl2, and then pentane (10 ml) was slowly added, in such a way asto obtain two separate layers, which were allowed to diffuse slowly (one week) into each other at -32C. The dark greencrystals of 7a?CH2Cl2?C5H12 were isolated and washed three times with pentane (145 mg, yield = 67 %). 1H NMR(500.13 MHz, CD2Cl2): delta = 14.47 (s, 1 H, Ru=CH), 7.67-7.60 (m, 2 H), 7.58-7.51 (m, 2 H), 7.44-7.40 (m, 2 H), 7.36-7.29(m, 3 H), 7.27-7.21 (m, 1 H), 7.17 (br, 1H), 7.05 (t, J = 7.2 Hz, 1 H), 6.97 (br, 2H), 6.94 (s, 2H), 6.91-6.73 (m, 8 H), 6.59(dd, J = 7.6, 1.5 Hz, 1 H), 6.50 (d, J = 8.3, 1 H), 4.27 (sep, J = 6.1 Hz, 1H), 2.42 (s, 6H), 2.15 (s, 6H), 2.04 (s, 6H), 1.07(d, J = 6.1 Hz), 0.66 (d, J = 6.1 Hz). 13C{1H} NMR (150.90 MHz, CD2Cl): delta= 272.40, 176.26, 153.78, 149,54, 147,54,146,79, 145.14, 142.86, 141.82, 141.13, 138.99, 137.91, 137.49, 137.15, 136.64, 131.23, 130.29, 130.22, 129.65,129.39, 129,35, 129,28, 129.16, 129.05, 128.99, 128.84, 128.73, 128.58, 128.43, 128.31, 127.89, 127.68, 127.52,127.43, 127.26, 127.01, 126.89, 125.79, 125.66, 125.23, 122.58, 122.58, 121.94, 113.47, 76.26, 51.98, 21.65, 21.30,20.92, 19.60, 18.86. HRMS (DART), m/z: 928.26871 [M+H]+, calculated for C55H5437CIN2OS101Ru: 928.26717.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bergen Teknologioverf¡ãring AS; Jensen, Vidar Remi; Occhipinti, Giovanni; EP2826783; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI