Final Thoughts on Chemistry for 2407-11-6

When you point to this article, it is believed that you are also very interested in this compound(2407-11-6)HPLC of Formula: 2407-11-6 and due to space limitations, I can only present the most important information.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of heterocyclic compounds of nitrogen. XXXIV. Derivatives of 2-chloro- and 2-aminobenzothiazole-6-sulfonamide》. Authors are Takahashi, Torizo; Taniyama, Hyozo.The article about the compound:2-Chloro-6-nitrobenzo[d]thiazolecas:2407-11-6,SMILESS:O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-]).HPLC of Formula: 2407-11-6. Through the article, more information about this compound (cas:2407-11-6) is conveyed.

2-Mercaptobenzothiazole with PCl5 and POCl3 on a boiling water bath gave 2-chlorobenzothiazole (I), whereas heating at 130-40° gave benzothiazole, pale yellow oil, b. 234°. Nitration of I gave 2-chloro-6-nitrobenzothiazole (II), pale yellow needles, m. 190°, which was reduced to the 2-chloro-6-amino compound (III), colorless needles, m. 163°, and converted to the 2-chloro-6-acetamido compound, colorless needles, m. 97°. Condensation of III and p-AcNHC6H4SO2Cl gave 2-chloro-6-(p-acetamidophenylsulfonamido)benzothiazole, colorless plates, m. 254°, hydrolyzed to the p-aminophenyl compound, colorless needles, m. 97°. II and 2-mercapto-6-nitrobenzothiazole gave bis(6-nitro-2-benzothiazolyl) sulfide, light yellow needles, m. 280-1°, which was reduced to the diamino compound, colorless needles, m. 272-3°. Cu(SCN)2 with p-H2NC6H4SO2NH2 gave 2-amino-6-benzothiazolesulfonamide, colorless needles, decompose 273°, which gave the 2-acetamido compound, colorless plates, m. 302°, and the 2-benzamido compound, colorless prisms, m. 248-9°, by heating with Ac2O and BzCl, resp..

When you point to this article, it is believed that you are also very interested in this compound(2407-11-6)HPLC of Formula: 2407-11-6 and due to space limitations, I can only present the most important information.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 2407-11-6

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Benzothiazoles. XI. Cyclohexylamine substitution of 2-halo-6-nitrobenzothiazoles》. Authors are Foa, M.; Ricci, A.; Todesco, P. E.; Vivarelli, P..The article about the compound:2-Chloro-6-nitrobenzo[d]thiazolecas:2407-11-6,SMILESS:O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-]).Safety of 2-Chloro-6-nitrobenzo[d]thiazole. Through the article, more information about this compound (cas:2407-11-6) is conveyed.

cf. CA 63, 1676a, 8171a. The reaction of cyclohexylamine (I) and 2-Cl or 2-Br-6NO2-benzothiazole to give 2-cyclohexylamino-6-nitrobenzothiazole (II), m. 167° (alc.), was studied in MeOH, EtOH, and isoPrOH. In MeOH in addition to II, 30% of the 2-MeO derivative was formed. Addition of I.HClO4 inhibits methanolysis and also decreases the rate of aminolysis. I.HClO4 also diminished the rate in EtOH when solvolysis was absent. LiClO4 and Et4N+ClO4- on the other hand increased the rate of the aminolysis reaction. Et2NH.HClO4 also decreases the rate of reaction of Et2NH and 2-halobenzothiazoles. KCl/KBr is about 1.4 in the reactions studied.

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extended knowledge of 2407-11-6

As far as I know, this compound(2407-11-6)Application In Synthesis of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Chloro-6-nitrobenzo[d]thiazole(SMILESS: O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-],cas:2407-11-6) is researched.Application In Synthesis of Dirhodium(II) tetrakis(caprolactam). The article 《Stereodivergent, Diels-Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application》 in relation to this compound, is published in Chemical Science. Let’s take a look at the latest research on this compound (cas:2407-11-6).

Chiral α,β-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic γ- and δ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. The authors describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcs., and application to a formal synthesis of (+)-dihydrocompactin is described. A combined exptl. and computational study of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of Bronsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with exptl. observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR anal. of diene alc.-Bronsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through H-bonding effects.

As far as I know, this compound(2407-11-6)Application In Synthesis of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Top Picks: new discover of 2407-11-6

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Bioorganic & Medicinal Chemistry Letters called Identification of 2-aminobenzimidazoles as potent melanin-concentrating hormone 1-receptor (MCH1R) antagonists, Author is Moriya, Minoru; Kishino, Hiroyuki; Sakuraba, Shunji; Sakamoto, Toshihiro; Suga, Takuya; Takahashi, Hidekazu; Suzuki, Takao; Ito, Masahiko; Ito, Junko; Moriya, Ryuichi; Takenaga, Norihiro; Iwaasa, Hisashi; Ishihara, Akane; Kanatani, Akio; Fukami, Takehiro, which mentions a compound: 2407-11-6, SMILESS is O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-], Molecular C7H3ClN2O2S, Safety of 2-Chloro-6-nitrobenzo[d]thiazole.

A series of 2-aminobenzimidazole-based MCH1R antagonists was identified by core replacement of the aminoquinoline lead 1. Subsequent modification of the 2- and 5-positions led to improvement in potency and intrinsic clearance. Compound 25 (I) exhibited good plasma and brain exposure, and attenuated MCH induced food intake at 30 mg/kg PO in rats.

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The origin of a common compound about 2407-11-6

As far as I know, this compound(2407-11-6)Electric Literature of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Aminoalkyl esters of thiazolecarboxylic acids. III. 2-Amino-6-benzothiazolecarboxylic acid, published in 1950, which mentions a compound: 2407-11-6, Name is 2-Chloro-6-nitrobenzo[d]thiazole, Molecular C7H3ClN2O2S, Electric Literature of C7H3ClN2O2S.

cf. C.A. 46, 3533c, 10150h. To 12g. 2-benzothiazolecarboxylic acid in 30 ml. concentrated H2SO4 was slowly added 9 ml. HNO3 (d. 1.35) at room temperature, the mixture kept 12 hrs. at room temperature, poured on ice, and the crude product washed with H2O, dried, taken up in concentrated H2SO4, and precipitated with H2O (ice cooling necessary), yielded 85% 6-nitro-2-benzothiazolecarboxylic acid (I) yellow, decompose 115°; Ba salt, yellow needles, does not m. 300°; NH4 salt, yellow, m. 210°; Ag salt, colorless. Heating I with absolute EtOH and concentrated H2SO4 to 50-5° gave 40% 6-nitrobenzothiazole. I heated with SOCl2 to 60-70° formed a substance, m. 187-8°, containing Cl that is unattacked by refluxing with EtOH or MeOH and identified as 2-chloro-6-nitrobenzothiazole. I and PCl5 behave similarly. Heating 13.6 g. p-H2NC6H4CO2CH2CH2NEt2HCl in 50 ml. EtOH with a triturated mixture of 13.5 g. CuCl2 and 7.6 g. NH4CNS 15 min. at 60°, and adding 40 ml. dilute HCl gave a precipitate, which was extracted repeatedly with hot H2O and the extract neutralized with NH4OH, yielding 43% 2-diethylaminoethyl 2-amino-6-benzothiazolecarboxylate, m. 155° (from EtOH); HCl salt, m. 193-4° (from EtOH). Similarly, 6.1 g. p-H2NC6H4CO2(CH2)3NEt2HCl in 50 ml. EtOH treated with 3 ml. 30% alc. HCl, 6.5 g. CuCl2, and 3.6 g. NH4CNS gave 3.7 g. 3-diethylaminopropyl 2-amino-6-benzothiazolecarboxylate, m. 146° (from dilute EtOH). Similarly was formed 60% piperidinoethyl ester, m. 186°.

As far as I know, this compound(2407-11-6)Electric Literature of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 2407-11-6

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Chloro-6-nitrobenzo[d]thiazole(SMILESS: O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-],cas:2407-11-6) is researched.Application of 15418-29-8. The article 《Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole》 in relation to this compound, is published in Beilstein Journal of Organic Chemistry. Let’s take a look at the latest research on this compound (cas:2407-11-6).

2-Cyanobenzothiazoles (CBTs) were the useful building blocks for luciferin derivatives, for bioluminescent imaging, handles and for bioorthogonal ligations. An economical and scalable synthesis of 6-amino-2-cyanobenzothiazole based on a cyanation catalyzed by 1,4-diazabicyclo[2.2.2]octane (DABCO) was presented and its advantages for scale-up over previously reported routes was also discussed.

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Interesting scientific research on 2407-11-6

As far as I know, this compound(2407-11-6)Computed Properties of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 2407-11-6, is researched, Molecular C7H3ClN2O2S, about Glycosyl 6-nitro-2-benzothiazoate. A highly efficient donor for β-stereoselective glycosylation, the main research direction is glycosyl nitro benzothiazoate donor stereoselective glycosylation; oligosaccharide preparation stereoselective glycosylation.Computed Properties of C7H3ClN2O2S.

Highly β-stereoselective glycosylations of glycosyl acceptors having a primary hydroxyl group by using a novel glycosyl donor, α-glycosyl 6-nitro-2-benzothiazoate (I), proceeded smoothly in the presence of a catalytic amount of trifluoromethanesulfonic acid (TfOH) in CH2Cl2 at -78°C to afford the corresponding glycosides in high yields. I gave β-saccharides more dominantly compared with those using other α-glycosyl donors such as thioform- and trichloroacetimidates or fluoride under the same conditions.

As far as I know, this compound(2407-11-6)Computed Properties of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The origin of a common compound about 2407-11-6

As far as I know, this compound(2407-11-6)Electric Literature of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Aminoalkyl esters of thiazolecarboxylic acids. III. 2-Amino-6-benzothiazolecarboxylic acid, published in 1950, which mentions a compound: 2407-11-6, Name is 2-Chloro-6-nitrobenzo[d]thiazole, Molecular C7H3ClN2O2S, Electric Literature of C7H3ClN2O2S.

cf. C.A. 46, 3533c, 10150h. To 12g. 2-benzothiazolecarboxylic acid in 30 ml. concentrated H2SO4 was slowly added 9 ml. HNO3 (d. 1.35) at room temperature, the mixture kept 12 hrs. at room temperature, poured on ice, and the crude product washed with H2O, dried, taken up in concentrated H2SO4, and precipitated with H2O (ice cooling necessary), yielded 85% 6-nitro-2-benzothiazolecarboxylic acid (I) yellow, decompose 115°; Ba salt, yellow needles, does not m. 300°; NH4 salt, yellow, m. 210°; Ag salt, colorless. Heating I with absolute EtOH and concentrated H2SO4 to 50-5° gave 40% 6-nitrobenzothiazole. I heated with SOCl2 to 60-70° formed a substance, m. 187-8°, containing Cl that is unattacked by refluxing with EtOH or MeOH and identified as 2-chloro-6-nitrobenzothiazole. I and PCl5 behave similarly. Heating 13.6 g. p-H2NC6H4CO2CH2CH2NEt2HCl in 50 ml. EtOH with a triturated mixture of 13.5 g. CuCl2 and 7.6 g. NH4CNS 15 min. at 60°, and adding 40 ml. dilute HCl gave a precipitate, which was extracted repeatedly with hot H2O and the extract neutralized with NH4OH, yielding 43% 2-diethylaminoethyl 2-amino-6-benzothiazolecarboxylate, m. 155° (from EtOH); HCl salt, m. 193-4° (from EtOH). Similarly, 6.1 g. p-H2NC6H4CO2(CH2)3NEt2HCl in 50 ml. EtOH treated with 3 ml. 30% alc. HCl, 6.5 g. CuCl2, and 3.6 g. NH4CNS gave 3.7 g. 3-diethylaminopropyl 2-amino-6-benzothiazolecarboxylate, m. 146° (from dilute EtOH). Similarly was formed 60% piperidinoethyl ester, m. 186°.

As far as I know, this compound(2407-11-6)Electric Literature of C7H3ClN2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 2407-11-6

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Chloro-6-nitrobenzo[d]thiazole(SMILESS: O=[N+](C1=CC=C2N=C(Cl)SC2=C1)[O-],cas:2407-11-6) is researched.Application of 15418-29-8. The article 《Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole》 in relation to this compound, is published in Beilstein Journal of Organic Chemistry. Let’s take a look at the latest research on this compound (cas:2407-11-6).

2-Cyanobenzothiazoles (CBTs) were the useful building blocks for luciferin derivatives, for bioluminescent imaging, handles and for bioorthogonal ligations. An economical and scalable synthesis of 6-amino-2-cyanobenzothiazole based on a cyanation catalyzed by 1,4-diazabicyclo[2.2.2]octane (DABCO) was presented and its advantages for scale-up over previously reported routes was also discussed.

As far as I know, this compound(2407-11-6)Safety of 2-Chloro-6-nitrobenzo[d]thiazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

What unique challenges do researchers face in 2407-11-6

This literature about this compound(2407-11-6)Computed Properties of C7H3ClN2O2Shas given us a lot of inspiration, and I hope that the research on this compound(2-Chloro-6-nitrobenzo[d]thiazole) can be further advanced. Maybe we can get more compounds in a similar way.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Chemospecific and ligand free CuI catalyzed heterogeneous N-arylation of amines with diheteroaryl halides at room temperature, published in 2011-03-07, which mentions a compound: 2407-11-6, mainly applied to aliphatic amine heteroaryl halide copper chemospecific arylation; heteroaryl amine preparation; copper chemospecific arylation catalyst, Computed Properties of C7H3ClN2O2S.

A ligand free, copper-catalyzed N-arylation reaction of amines with diheteroaryl halides in heterogeneous medium at room temperature has been developed. The protocol is very effective for low boiling amines and useful for amines available in aqueous solution The reaction gives chemospecific arylation of amines with diheteroaryl halides in the mixture monoheteroaryl halides, diheteroaryl halides and carbocyclic aryl halides. The reaction is also chemospecific with respect to arylation of aliphatic amines. Monoarylated piperazines were also synthesized at room temperature following this protocol.

This literature about this compound(2407-11-6)Computed Properties of C7H3ClN2O2Shas given us a lot of inspiration, and I hope that the research on this compound(2-Chloro-6-nitrobenzo[d]thiazole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI