New learning discoveries about 172222-30-9

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, 172222-30-9

172222-30-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

EXAMPLE 1 Metathesis by Ethenolysis of Methyl Oleate Catalyzed by a Type 3 Complex (FIG. 1) in an Ionic Liquid; 1 ml of 3-butyl-1,2-dimethylimidazolium bis-triflylamide with formula [BMMI]+[N(CF3SO2)2]- pre-dried overnight at 80 C., 148 mg of methyl oleate (source: Fluka, with a purity higher than 98%) and 15 mg of the complex with formula Cl2Ru(CH-o-O-iPrC6H4)PCy3 (synthesized by reacting the 1st generation Grubbs complex with formula Cl2Ru(CHC6H5)(PCy3)2 with 1-isopropoxy-2-vinylbenzene in the presence of CuCl), this corresponding to 5% molar of catalyst with respect to methyl oleate, were introduced, in an inert atmosphere of argon, into an autoclave reactor provided with an agitation system and a pressure sensor. The autoclave was then placed under vacuum and pressurized to obtain a pressure of 10 bars (1 MPa) of ethylene (origin: Alphagas, quality N25). The temperature was kept constant at 20 C. The medium was stirred at ambient temperature for 2 hours, then the excess ethylene was slowly purged by returning to atmosphere pressure at a temperature not exceeding 20 C. and the autoclave was again placed under an atmosphere of argon. The products were separated from the ionic liquid by adding 2 to 3 ml of heptane distilled over CaH2 and degassed. An aliquot (100 mul) of the extracted solution was passed through a short silica column (2 cm) eluted with diethyl ether. It was analyzed by gas phase chromatography (ZB-1 column, 100% dimethylpolysiloxane, 30 metres, helium vector gas 2 ml/min, temperature programming: 60 C. then 5 C./min to 220 C.) coupled to a mass spectrometer. The methyl oleate conversion was 95%. It was calculated using decane as an internal reference. The reaction products were composed of 1-decene (fraction A) and methyl decenoate (fraction B). The presence of 1-decene isomers was not detected. Homo-metathesis products were present in trace amounts and could not be quantified.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, 172222-30-9

Reference£º
Patent; Olivier-Bourbigou, Helene; Vallee, Christophe; Hillion, Gerard; US2007/179307; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 172222-30-9

With the complex challenges of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Name is Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 172222-30-9, its synthesis route is as follows.,172222-30-9

In a dry box, a Teflon-sealed n.m.r. tube was charged with (2S)-methyl 2-N-acetylaminopenta-2,4-dienoate 57 (10.8 mg, 63.9 mumol), Grubbs’ catalyst (50.7 mg, 61.6 mumol) and degassed deuterated DCM (CD2Cl2, 0.8 mL) at room temperature. The n.m.r. tube was shaken gently and reaction progress was monitored by 1H and 31P n.m.r. spectroscopy. Compounds were identified by the following diagnostic resonances: 1H n.m.r. (300 MHz, CD2Cl2): After 15 min: Grubbs’ catalyst: delta 8.61 (d, J=7.6 Hz, 2H, ortho-Arom CH), 20.05 (s, 1H, [Ru]CHPh); Ruthenium-dienamide complex 73: delta 7.96 (d, J=11.0 Hz, 1H, [Ru]CHCH), 20.11 (d, J=11.0 Hz, 1H, [Ru]CH); Ruthenium-dienamide chelate 74 (trace): delta 15.20 (d, J=4.2 Hz, 1H, [Ru]CH); Ratio of ruthenium complexes [Ru]CHPh: 73: 74=1.0:1.0:<0.1. After 60 min: Grubbs' catalyst: delta 8.45 (d, J=7.6 Hz, 2H, ortho-Arom CH), 20.04 (s, 1H, [Ru]CHPh); Ruthenium-dienamide complex 73: delta 7.96 (d, J=11.0 Hz, 1H, [Ru]CH=CH), 20.10 (d, J=11.0 Hz, 1H, [Ru]CH); Ruthenium-dienamide chelate 74: delta 6.73 (d, J=3.0 Hz, 1H, [Ru]CHCH), 15.19 (d, J=4.2 Hz, 1H, [Ru]CH); Ratio of ruthenium complexes [Ru]CHPh: 73: 74=3:1:1. After 120 min (no change after 18 h): Ruthenium-dienamide chelate 74: delta 6.71 (d, J=3.0 Hz, 1H, [Ru]CHCH), 15.19 (d, J=4.0 Hz, 1H, [Ru]CH). 31P n.m.r. (300 MHz, CDCl3): delta Ruthenium-dienamide chelate 74: 35.0; Grubbs' catalyst: 37.0; Ruthenium-dienamide complex 73: 38.8; Tricyclohexylphosphine oxide: 46.5. With the complex challenges of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium Reference£º
Patent; Robinson, Andrea; Elaridi, Jomana; US2007/197429; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 172222-30-9

172222-30-9 Benzylidenebis(tricyclohexylphosphine)dichlororuthenium 60145889, aruthenium-catalysts compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.172222-30-9,Benzylidenebis(tricyclohexylphosphine)dichlororuthenium,as a common compound, the synthetic route is as follows.,172222-30-9

In a glove box, NHC ligand precursor 23 (162 mg, .34 mmol), ruthenium precursor 5 (150 mg, .27 mmol) and KOt-Bu(Fe) (74 mg, .34 mmol) were combined in C6D6 and stirred at RT for 2.5 hours. The flask was sealed, removed from the glove box and the reaction was concentrated and purified by flash column chromatography (2.5percent – > 5percent Et2psi/Pent) to yield a brown oil. The brown oil was lyophilized from benzene to give 25 as a brown solid (66 mg, 25percent). 1H NMR (300 MHz3 CDCl3) delta 20.07 (d, J = 10.5 Hz, IH)3 8.03 (br, 2H), 7.60 (t, 1.8 Hz, IH), 6.86-6.81 (ra, 2H), 6.51 – 6.47 (m, IH), 1.81 – 1.07 (m).

172222-30-9 Benzylidenebis(tricyclohexylphosphine)dichlororuthenium 60145889, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; WO2007/75427; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 172222-30-9

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,172222-30-9

A suspension of 3.07 g (3.73 mmol) of [RuCl2(PCy3)2(phenylmethylene)] (commercial available from Sigma-Aldrich Inc., St. Louis, USA), 380 mg (3.84 mmol) copper chloride and 1.06 g (4.10 mmol) 4-chloro-2-trifluoromethyl-8-vinyl-quinoline in 135 ml methylene chloride was stirred at 300C for 90 min. The reaction mixture was evaporated to dryness and the isolated crude product purified by silica gel chromatography (hexane / ethyl acetat 2:1) and finally digested in 50 ml pentane at room temperature for 30 min to yield 429 mg (17percent) of the title compound as dark green crystals. MS: 697.0 (M+). 31P-NMR (121 MHz, C6D6): 54.2 ppm. 1H-NMR (300 MHz, C6D6): 1.18-2.35 (m, 30H); 2.60 (q, J=12.0Hz, 3H); 6.82 (t, J=6.0Hz, IH); 7.01 (d, J=3.0Hz, IH); 7.55 (d, J= 6.0Hz, IH); 7.89 (d, J=6.0Hz, IH); 17.80-17.90 (m, IH).

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2008/644; (2008); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 172222-30-9

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,172222-30-9

A suspension of 3.07 g (3.73 mmol) of [RuCl2(PCy3)2(phenylmethylene)] (commercial available from Sigma-Aldrich Inc., St. Louis, USA), 380 mg (3.84 mmol) copper chloride and 1.06 g (4.10 mmol) 4-chloro-2-trifluoromethyl-8-vinyl-quinoline in 135 ml methylene chloride was stirred at 300C for 90 min. The reaction mixture was evaporated to dryness and the isolated crude product purified by silica gel chromatography (hexane / ethyl acetat 2:1) and finally digested in 50 ml pentane at room temperature for 30 min to yield 429 mg (17percent) of the title compound as dark green crystals. MS: 697.0 (M+). 31P-NMR (121 MHz, C6D6): 54.2 ppm. 1H-NMR (300 MHz, C6D6): 1.18-2.35 (m, 30H); 2.60 (q, J=12.0Hz, 3H); 6.82 (t, J=6.0Hz, IH); 7.01 (d, J=3.0Hz, IH); 7.55 (d, J= 6.0Hz, IH); 7.89 (d, J=6.0Hz, IH); 17.80-17.90 (m, IH).

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2008/644; (2008); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 172222-30-9

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,172222-30-9

EXAMPLE 1 Metathesis by Ethenolysis of Methyl Oleate Catalyzed by a Type 3 Complex (FIG. 1) in an Ionic Liquid; 1 ml of 3-butyl-1,2-dimethylimidazolium bis-triflylamide with formula [BMMI]+[N(CF3SO2)2]- pre-dried overnight at 80 C., 148 mg of methyl oleate (source: Fluka, with a purity higher than 98%) and 15 mg of the complex with formula Cl2Ru(CH-o-O-iPrC6H4)PCy3 (synthesized by reacting the 1st generation Grubbs complex with formula Cl2Ru(CHC6H5)(PCy3)2 with 1-isopropoxy-2-vinylbenzene in the presence of CuCl), this corresponding to 5% molar of catalyst with respect to methyl oleate, were introduced, in an inert atmosphere of argon, into an autoclave reactor provided with an agitation system and a pressure sensor. The autoclave was then placed under vacuum and pressurized to obtain a pressure of 10 bars (1 MPa) of ethylene (origin: Alphagas, quality N25). The temperature was kept constant at 20 C. The medium was stirred at ambient temperature for 2 hours, then the excess ethylene was slowly purged by returning to atmosphere pressure at a temperature not exceeding 20 C. and the autoclave was again placed under an atmosphere of argon. The products were separated from the ionic liquid by adding 2 to 3 ml of heptane distilled over CaH2 and degassed. An aliquot (100 mul) of the extracted solution was passed through a short silica column (2 cm) eluted with diethyl ether. It was analyzed by gas phase chromatography (ZB-1 column, 100% dimethylpolysiloxane, 30 metres, helium vector gas 2 ml/min, temperature programming: 60 C. then 5 C./min to 220 C.) coupled to a mass spectrometer. The methyl oleate conversion was 95%. It was calculated using decane as an internal reference. The reaction products were composed of 1-decene (fraction A) and methyl decenoate (fraction B). The presence of 1-decene isomers was not detected. Homo-metathesis products were present in trace amounts and could not be quantified.

With the rapid development of chemical substances, we look forward to future research findings about Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

Reference£º
Patent; Olivier-Bourbigou, Helene; Vallee, Christophe; Hillion, Gerard; US2007/179307; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 172222-30-9

The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings.

172222-30-9, Benzylidenebis(tricyclohexylphosphine)dichlororuthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a dry box, a Teflon-sealed n.m.r. tube was charged with (2S)-methyl 2-N-acetylaminopenta-2,4-dienoate 57 (10.8 mg, 63.9 mumol), Grubbs’ catalyst (50.7 mg, 61.6 mumol) and degassed deuterated DCM (CD2Cl2, 0.8 mL) at room temperature. The n.m.r. tube was shaken gently and reaction progress was monitored by 1H and 31P n.m.r. spectroscopy. Compounds were identified by the following diagnostic resonances: 1H n.m.r. (300 MHz, CD2Cl2): After 15 min: Grubbs’ catalyst: delta 8.61 (d, J=7.6 Hz, 2H, ortho-Arom CH), 20.05 (s, 1H, [Ru]CHPh); Ruthenium-dienamide complex 73: delta 7.96 (d, J=11.0 Hz, 1H, [Ru]CHCH), 20.11 (d, J=11.0 Hz, 1H, [Ru]CH); Ruthenium-dienamide chelate 74 (trace): delta 15.20 (d, J=4.2 Hz, 1H, [Ru]CH); Ratio of ruthenium complexes [Ru]CHPh: 73: 74=1.0:1.0:<0.1. After 60 min: Grubbs' catalyst: delta 8.45 (d, J=7.6 Hz, 2H, ortho-Arom CH), 20.04 (s, 1H, [Ru]CHPh); Ruthenium-dienamide complex 73: delta 7.96 (d, J=11.0 Hz, 1H, [Ru]CH=CH), 20.10 (d, J=11.0 Hz, 1H, [Ru]CH); Ruthenium-dienamide chelate 74: delta 6.73 (d, J=3.0 Hz, 1H, [Ru]CHCH), 15.19 (d, J=4.2 Hz, 1H, [Ru]CH); Ratio of ruthenium complexes [Ru]CHPh: 73: 74=3:1:1. After 120 min (no change after 18 h): Ruthenium-dienamide chelate 74: delta 6.71 (d, J=3.0 Hz, 1H, [Ru]CHCH), 15.19 (d, J=4.0 Hz, 1H, [Ru]CH). 31P n.m.r. (300 MHz, CDCl3): delta Ruthenium-dienamide chelate 74: 35.0; Grubbs' catalyst: 37.0; Ruthenium-dienamide complex 73: 38.8; Tricyclohexylphosphine oxide: 46.5. The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings. Reference£º
Patent; Robinson, Andrea; Elaridi, Jomana; US2007/197429; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 172222-30-9

The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings.

172222-30-9, Benzylidenebis(tricyclohexylphosphine)dichlororuthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 1 Metathesis by Ethenolysis of Methyl Oleate Catalyzed by a Type 3 Complex (FIG. 1) in an Ionic Liquid; 1 ml of 3-butyl-1,2-dimethylimidazolium bis-triflylamide with formula [BMMI]+[N(CF3SO2)2]- pre-dried overnight at 80 C., 148 mg of methyl oleate (source: Fluka, with a purity higher than 98%) and 15 mg of the complex with formula Cl2Ru(CH-o-O-iPrC6H4)PCy3 (synthesized by reacting the 1st generation Grubbs complex with formula Cl2Ru(CHC6H5)(PCy3)2 with 1-isopropoxy-2-vinylbenzene in the presence of CuCl), this corresponding to 5% molar of catalyst with respect to methyl oleate, were introduced, in an inert atmosphere of argon, into an autoclave reactor provided with an agitation system and a pressure sensor. The autoclave was then placed under vacuum and pressurized to obtain a pressure of 10 bars (1 MPa) of ethylene (origin: Alphagas, quality N25). The temperature was kept constant at 20 C. The medium was stirred at ambient temperature for 2 hours, then the excess ethylene was slowly purged by returning to atmosphere pressure at a temperature not exceeding 20 C. and the autoclave was again placed under an atmosphere of argon. The products were separated from the ionic liquid by adding 2 to 3 ml of heptane distilled over CaH2 and degassed. An aliquot (100 mul) of the extracted solution was passed through a short silica column (2 cm) eluted with diethyl ether. It was analyzed by gas phase chromatography (ZB-1 column, 100% dimethylpolysiloxane, 30 metres, helium vector gas 2 ml/min, temperature programming: 60 C. then 5 C./min to 220 C.) coupled to a mass spectrometer. The methyl oleate conversion was 95%. It was calculated using decane as an internal reference. The reaction products were composed of 1-decene (fraction A) and methyl decenoate (fraction B). The presence of 1-decene isomers was not detected. Homo-metathesis products were present in trace amounts and could not be quantified.

The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Olivier-Bourbigou, Helene; Vallee, Christophe; Hillion, Gerard; US2007/179307; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

As the rapid development of chemical substances, we look forward to future research findings about 172222-30-9

Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

In a glove box, NHC ligand precursor 23 (162 mg, .34 mmol), ruthenium precursor 5 (150 mg, .27 mmol) and KOt-Bu(Fe) (74 mg, .34 mmol) were combined in C6D6 and stirred at RT for 2.5 hours. The flask was sealed, removed from the glove box and the reaction was concentrated and purified by flash column chromatography (2.5percent – > 5percent Et2psi/Pent) to yield a brown oil. The brown oil was lyophilized from benzene to give 25 as a brown solid (66 mg, 25percent). 1H NMR (300 MHz3 CDCl3) delta 20.07 (d, J = 10.5 Hz, IH)3 8.03 (br, 2H), 7.60 (t, 1.8 Hz, IH), 6.86-6.81 (ra, 2H), 6.51 – 6.47 (m, IH), 1.81 – 1.07 (m).

As the rapid development of chemical substances, we look forward to future research findings about 172222-30-9

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; WO2007/75427; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI