New learning discoveries about 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

2-Methyl-acrylic acid 3-trimethoxysilane propyl ester (87 mg, 0.35 mmol) in dry THF was treated with triethylamine (0.20 mL) and the mixture was stirred for 30 min at ambient temperature under air. [RuCl2(PPh3)3] (335 mg, 0.35 mmol) was added and the reaction mixture was stirred at reflux for 2 h, during which there was a color residue was washed with diethyl ether and hexane. Recrystallization from CH2Cl2/hexane afforded dark green crystals of 1 in a week. Yield: 128 mg, 47% (based on Ru). IR (KBr disc, cm-1): nu(C=C) 1623 (s), nu(OCO) 1504 (s) and 1472 (s). MS (FAB): m/z = 781 [M]+, 746 [M-Cl]+, 711 [M-2Cl]+. mueff = 1.93 muB. Anal. for C40H35O2Cl2P2Ru: calcd. C 61.46, H 4.51%; found C 61.41, H 4.48%.

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Article; Gu, Jiling; Shi, Li-Miao; Ma, Xiu-Fang; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 466; (2017); p. 382 – 388;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The same basic method, as described here for [RuCl(PPh3)2(LMe,H)]Cl, was followed for all the complexes in this study. Asuspension of [RuCl2(PPh3)3] (0.36 g, 0.4 mmol) and LMe,H (0.15 g,0.4 mmol) in dry dichloromethane (15 cm3) was stirred for 3 h atroom temperature. This yielded an orange precipitate, which wascollected by filtration. Alternatively, the products 3-6 were solublein the reaction mixture, and were precipitated from it by careful addition of diethyl ether. In either case, the resultant solids werewashed repeatedly with diethyl ether to remove excess PPh3, thendried in vacuo.

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Roberts, Thomas D.; Halcrow, Malcolm A.; Polyhedron; vol. 103; (2016); p. 79 – 86;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

Example B2: Preparation of [(CI)2Ru(Pphenyl3)(ligand L2)], K2tolueneyl 272.5 mg (0.284 mmol) of dichlorotris(triphenylphosphine)ruthenium(ll) and 160.0 mg (0.296 mmol) of ligand L2 are placed in a 10 ml Schlenk tube and admixed with 6.5 ml of dry toluene under argon. The dark suspension is stirred overnight at room temperature, resulting in a colour change to orange-red. After addition of 4 ml of dry pentane, the stirrer is switched off and the supernatant orange solution is filtered off with suction from the orange solid. The solid is washed five times with 4 ml each time of pentane and dried in a high vacuum. This gives 244 mg (88% of theory) of the title compound as an orange powder. 31P-NMR (C6D6, 121.5 MHz, ppm): 49.7 (d, J = 40), 61.2 (d, J = 40).

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; SOLVIAS AG; WO2007/104690; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

RuCl2(PPh3)3(480 mg, 0.5 mmol) was placed in a 25 mL flask filled with argon. THF(12.5 mL) and (R,R)-DPEN (127 mg, 0.6 mmol) were then added. The mixturewas degassed and stirred under argon at 25 oC for 6 h. After removalof turbidity by filtration, n-hexane (30 mL) was added, and a light yellowsolid was obtained. The supernatant was removed and the resulting solid wasdried under reduced pressure to give analytically pure 1f (442 mg, 97% yield). 2.1. RuCl2(R,R)-DPEN(PPh3)2 1f1H NMR (300MHz, C6D6, ppm), delta: 7.95-7.92 (m,12H), 6.97-6.95 (m, 18H), 6.74 (br, 10H), 4.61-4.4.59(m, 2H), 4.12-4.09 (m, 2H), 3.59-3.56 (m, 2H); 31P NMR (121MHz, C6D6, ppm), delta: 45.7.

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Li, Xuefeng; Ma, Yaping; Xing, Zhikui; Tang, Ning; Zhu, Jin; Deng, Jingen; Tetrahedron Letters; vol. 55; 29; (2014); p. 3868 – 3872;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-dicyclohexylphosphine aniline,1.2 mmol of p-chlorobenzyl alcohol, 1 mmol of 1,1′-diphenylphosphinoferrocene, 1 mmol of RuCl2 (PPh3) 3, 1.2 mmol of triethylamine and 20 ml of toluene at a temperature of 110 C. and heated under a nitrogen atmosphere for 24 hAfter cooling and filtration, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 20 in a yield of 86%.

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

cis-cis- 1,3,5-triaminocyclohexane (30.0 nig, 0.232 mmol) was added to an ampoule charged with dichlorotris(triphenylphosphane)ruthenium(II) (196 mg, 0.204 mmol) dissolved in dichloromethane (20 mL), causing an instant colour change from black to orange. The solution was stirred at 50C for 4 days in the sealed vessel, during whichtime the solution changed colour to yellow and a white precipitate formed. The precipitate was removed by filtration and the filtrate reduced in volume to approx. 1 mL in vacuo. The product was precipitated by addition of pentane (20 mL) as an orange powder, and washed twice with pentane (20 mL). Yield: 115 mg (86.8 %, 0.177 mmol of RuCl2(K3-c -tach)(PPh3).CH2Cl2). NMR Spectroscopy Cs minor plane H NMR (CD2C12, 399.8 MHz, 293K) delta 7.85 (app t, HH = 7.5 Hz, VHP = 5.8 Hz, VHH = 1.5 Hz, 6H, P/Vz3, Ar2), 7.36 (m, 9H, Rho/>Lambda3, Ar3 + Ar4), 4.77 (s, 2H, NH2, N1), 3.90 (bs, 1Eta, CH, Cy1), 2.92 (s, 2Eta, CH, Cy2), 2.65 (d, VHH = 10.6 Hz, 2H, N N2), 1.92 (s, 4H, CH2, Cy3), 1.85 (d, HH = 10.6 Hz, 2H, NH2, N2), 1.62 (d, VHH = 15.3 Hz, 1H, CH2, Cy4), 1.00 (d, VHH = 15.3 Hz, 1H, CH2, Cy4); 31Rho{} NMR (CD2C12, 161.8 MHz, 293 ) delta 66.0 (s, IP, PPh3); “Ci’H} NMR (CD2C12, 100.5 MHz, 293K) delta 136.2 (d, ‘Jpc = 36.0 Hz, VPh3, Ar1), 134.2 (d, VPC = 10.1 Hz, VPh3, Ar2), 129.5 (d, VPC = 1.85 Hz, ?P 3, Ar4), 128.8 (d, VPC = 8.7 Hz, ?Ph3, Ar3), 44.0 (s, CH, Cy1), 43.8 (s, CH, Cy2), 35.0 (s, CH2, Cy3), 33.6 (s, CH2, Cy4).Mass Spectrometry ESI-MS: m/z 569.1186 ([RuCl(NCMe)( 3-c i-tach)(PPh3)l+. Calc 569.1173, 100 %), 528.0919 ([RuCl(K3-c-tach)(PPh3)]+; 528.0907, 25), 246.5607 ([RU(K3-CW- tach)(PPh3)]2+, 246.5608, 10). Infra-Red Spectroscopy ATR-IR: (cm 1) 3462, 3283, 3240, 3050, 2888, 1649, 1588, 1480, 1432 (P-Ph), 1367, 1346, 1270, 1211, 1183, 1156, 1089, 1027, 968, 905. Elemental Analysis CH2C12 c / % H / % N / % Found 46.25 4.92 6.43 0 51.15 5.37 7.46 1 46.31 4.97 6.48 Table 0.1: CHN Elemental analysis for RuCl2(K3-cw-tach)(PPh3)

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; UNIVERSITY OF YORK; GAMBLE, Aimee, Joanna; LYNAM, Jason, Martin; WALTON, Paul, Howard; WO2013/38134; (2013); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI