Something interesting about 138984-26-6

Compound(138984-26-6)Formula: C24H40N4O4Rh2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Dirhodium(II) tetrakis(caprolactam)), if you are interested, you can check out my other related articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Dirhodium(II) tetrakis(caprolactam), is researched, Molecular C24H40N4O4Rh2, CAS is 138984-26-6, about Benzylic Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate.Formula: C24H40N4O4Rh2.

Dirhodium caprolactamate [Rh2(cap)4] is an effective catalyst for benzylic oxidation with tert-Bu hydroperoxide (TBHP) under mild conditions. Sodium bicarbonate is the optimal base additive for substrate conversion. Benzylic carbonyl compounds are readily obtained, and a formal synthesis of palmarumycin CP2 using this methodol. is described.

Compound(138984-26-6)Formula: C24H40N4O4Rh2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Dirhodium(II) tetrakis(caprolactam)), if you are interested, you can check out my other related articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Interesting scientific research on 138984-26-6

If you want to learn more about this compound(Dirhodium(II) tetrakis(caprolactam))Synthetic Route of C24H40N4O4Rh2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(138984-26-6).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t, Journal of Organic Chemistry called Catalytic Allylic Oxidation of Cyclic Enamides and 3,4-Dihydro-2H-Pyrans by TBHP, Author is Yu, Yang; Humeidi, Ranad; Alleyn, James R.; Doyle, Michael P., which mentions a compound: 138984-26-6, SMILESS is C12=O[Rh+2]3(O=C4[N-]5CCCCC4)([N-]6C(CCCCC6)=O7)[N-](CCCCC8)C8=O[Rh+2]357[N-]1CCCCC2, Molecular C24H40N4O4Rh2, Synthetic Route of C24H40N4O4Rh2.

Allylic oxidation of heteroatom substituted cyclic alkenes, e.g. I [Z = NBoc, NTs, O; R = H, Me, Ph] by tert-Bu hydroperoxide (70% TBHP in water) using catalytic dirhodium caprolactamate [Rh2(cap)4] forms enone products with a variety of 2-substituted cyclic enamides and 3,4-dihyro-2H-pyrans, e.g. II. These reactions occur under mild reaction conditions, are operationally convenient to execute, and are effective for product formation with as low as 0.25 mol% catalyst loading. With heteroatom stabilization of the intermediate allylic free radical two sites for oxidative product formation are possible, and the selectivity of the oxidative process varies with the heteroatom when R = H. Cyclic enamides produce 4-piperidones in good yields when R = alkyl or aryl, but oxidation of 2H-pyrans also gives alkyl cleavage products. Alternative catalysts for TBHP oxidations show comparable selectivities but give lower product yields.

If you want to learn more about this compound(Dirhodium(II) tetrakis(caprolactam))Synthetic Route of C24H40N4O4Rh2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(138984-26-6).

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Discover the magic of the 138984-26-6

Here is a brief introduction to this compound(138984-26-6)COA of Formula: C24H40N4O4Rh2, if you want to know about other compounds related to this compound(138984-26-6), you can read my other articles.

COA of Formula: C24H40N4O4Rh2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Dirhodium(II) tetrakis(caprolactam), is researched, Molecular C24H40N4O4Rh2, CAS is 138984-26-6, about Efficient Aziridination of Olefins Catalyzed by Mixed-Valent Dirhodium(II,III) Caprolactamate. Author is Catino, Arthur J.; Nichols, Jason M.; Forslund, Raymond E.; Doyle, Michael P..

A mild, efficient, and selective aziridination of olefins catalyzed by dirhodium(II) caprolactamate [Rh2(cap)4·2CH3CN] is described. Use of p-toluenesulfonamide, N-bromosuccinimide, and potassium carbonate readily affords aziridines in isolated yields of up to 95% under extremely mild conditions with as little as 0.01 mol % Rh2(cap)4. Aziridine formation occurs through Rh25+-catalyzed aminobromination and subsequent base-induced ring closure. An X-ray crystal structure of a Rh25+ halide complex, formed from the reaction between Rh2(cap)4 and N-chlorosuccinimide, has been obtained.

Here is a brief introduction to this compound(138984-26-6)COA of Formula: C24H40N4O4Rh2, if you want to know about other compounds related to this compound(138984-26-6), you can read my other articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream Synthetic Route Of 138984-26-6

Here is a brief introduction to this compound(138984-26-6)SDS of cas: 138984-26-6, if you want to know about other compounds related to this compound(138984-26-6), you can read my other articles.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Mechanistic Investigation of Oxidative Mannich Reaction with tert-Butyl Hydroperoxide. The Role of Transition Metal Salt, published in 2013-01-30, which mentions a compound: 138984-26-6, mainly applied to oxidative Mannich reaction tert butyl hydroperoxide transition metal salt, SDS of cas: 138984-26-6.

A general mechanism is proposed for transition metal-catalyzed oxidative Mannich reactions of N,N-dialkylanilines with tert-Bu hydroperoxide (TBHP) as the oxidant. The mechanism consists of a rate-determining single electron transfer (SET) that is uniform from 4-methoxy- to 4-cyano-N,N-dimethylanilines. The tert-butylperoxy radical is the major oxidant in the rate-determining SET step that is followed by competing backward SET and irreversible heterolytic cleavage of the carbon-hydrogen bond at the α-position to nitrogen. A second SET completes the conversion of N,N-dimethylaniline to an iminium ion that is subsequently trapped by the nucleophilic solvent or the oxidant prior to formation of the Mannich adduct. The general role of Rh2(cap)4, RuCl2(PPh3)3, CuBr, FeCl3, and Co(OAc)2 in N,N-dialkylaniline oxidations by T-HYDRO is to initiate the conversion of TBHP to tert-butylperoxy radicals. A second pathway, involving O2 as the oxidant, exists for copper, iron, and cobalt salts. Results from linear free-energy relationship (LFER) analyses, kinetic and product isotope effects (KIE and PIE), and radical trap experiments of N,N-dimethylaniline oxidation by T-HYDRO in the presence of transition metal catalysts are discussed. Kinetic studies of the oxidative Mannich reaction in methanol and toluene are also reported.

Here is a brief introduction to this compound(138984-26-6)SDS of cas: 138984-26-6, if you want to know about other compounds related to this compound(138984-26-6), you can read my other articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI