Some tips on 301224-40-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, 301224-40-8

301224-40-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, cas is 301224-40-8,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

cis-RuC12(slMes)( CHC6H4O1-Pr)(PhP(OMe)2), cis-C797: To a round-bottomed flask was charged C627 (15.0 g), degassed CH2C12 (1000 mL) and a magnetic stir bar under nitrogen, followed the addition of phosphonite PhP(OMe)2 (4.1 g). The solution was stirred for 3.7 h and second portion of phosphonite PhP(OMe)2 (2.05 g) was added. The solution was continued to stir for 2 more hours and the solution was concentrated by a rotary evaporator. A silica gel plug column (4 x 2.5 in, D x H) was pre-wetted with CH2C12. Low vacuum suction was used to assist elution. The crude was loaded on the top of the column. The first eluent was CH2C12 and a green fraction was collected, that was C627 as verified by NIVIR. The green fraction was followed by a yellow fraction that appeared to be an oxidation derivative of the phosphonite. The eluent was then switched to gradient mixture of CH2C12 /EtOAc. A brown band containing the product was collected. The solvent was removed by a rotary evaporator and the residue was recrystallized from CH2C12 /heptanes. black crystalline solid was obtained (3.1 g). ?H NMR (400 IVIHz, CD2C12, ppm): oe 15.83 (d, J = 24 Hz, 1H, Ru=CI]), 9.16 (dd, J = 8 Hz, J = 2 Hz, 1H), 7.51 (m, 1H), 7.25 (m, 1H), 7.15 (m, 2H), 7.02 – 6.88 (m, 5H), 6.66 (s, 1H), 6.61 (d, J = 8 Hz, 1H), 6.14 (s, 1H), 4.49 (septet, J = 6Hz, 1H, CIJMe2), 4.02-3.62 (m, 4H, CH2CH2), 3.33 (d, J = 11 Hz, 3H, OCH3), 3.05 (d, J = 12 Hz, OCH3), 2.67 (s, 3H, mestyl methyl), 2.62 (s, 3H, mestyl methyl), 2.46 (s, 3H, mestyl methyl), 2.33 (s, 3H, mestyl methyl), 2.22 (s, 3H, mestyl methyl), 1.95 (s, 3H, mestyl methyl), 1.46 (d, J = 6Hz, 3H, CH(CH3)2), 1.19 (d, J = 6Hz, 3H, CH(CH3)2).3?P NIVIR (161.8 IVIFIz, CD2C12, ppm): oe 163.84 (b).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, 301224-40-8

Reference£º
Patent; MATERIA, INC.; GIARDELLO, Michael, A.; TRIMMER, Mark, S.; WANG, Li-Sheng; DUFFY, Noah, H.; JOHNS, Adam, M.; RODAK, Nicholas, J.; FIAMENGO, Bryan, A.; PHILLIPS, John, H.; (127 pag.)WO2017/53690; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI