New explortion of 15418-29-8

Although many compounds look similar to this compound(15418-29-8)COA of Formula: C8H12BCuF4N4, numerous studies have shown that this compound(SMILES:[Cu+](N#CC)(N#CC)(N#CC)N#CC.[B+3]([F-])([F-])([F-])[F-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Dalton Transactions called Towards efficient sustainable full-copper dye-sensitized solar cells, Author is Dragonetti, Claudia; Magni, Mirko; Colombo, Alessia; Fagnani, Francesco; Roberto, Dominique; Melchiorre, Fabio; Biagini, Paolo; Fantacci, Simona, which mentions a compound: 15418-29-8, SMILESS is [Cu+](N#CC)(N#CC)(N#CC)N#CC.[B+3]([F-])([F-])([F-])[F-], Molecular C8H12BCuF4N4, COA of Formula: C8H12BCuF4N4.

Two new heteroleptic copper(I) sensitizers bearing 6,6′-dimethyl-2,2′-bipyridine-4,4′-dibenzoic acid, to anchor the dye on the titania surface, and a π-delocalized 2-(R-phenyl)-1H-phenanthro[9,10-d]imidazole (R = NPh2 or O-hexyl) ancillary ligand were prepared and well characterized. Their performance as dyes in DSSCs is quite similar to that of the related complex bearing 2,9-dimesityl-1,10-phenanthroline as an ancillary ligand, when using the common I-/I3- redox couple or homoleptic copper complexes as electron shuttles. The exptl. results along with theor. calculations confirm the great potential of full-copper DSSCs.

Although many compounds look similar to this compound(15418-29-8)COA of Formula: C8H12BCuF4N4, numerous studies have shown that this compound(SMILES:[Cu+](N#CC)(N#CC)(N#CC)N#CC.[B+3]([F-])([F-])([F-])[F-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI