Category: ruthenium-catalysts. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Tris(2,2′-bipyridine)ruthenium bis(hexafluorophosphate), is researched, Molecular C30H24F12N6P2Ru, CAS is 60804-74-2, about Lead halide perovskites for photocatalytic organic synthesis. Author is Zhu, Xiaolin; Lin, Yixiong; San Martin, Jovan; Sun, Yue; Zhu, Dian; Yan, Yong.
Nature is capable of storing solar energy in chem. bonds via photosynthesis through a series of C-C, C-O and C-N bond-forming reactions starting from CO2 and light. Direct capture of solar energy for organic synthesis is a promising approach. Lead (Pb)-halide perovskite solar cells reach 24.2% power conversion efficiency, rendering perovskite a unique type material for solar energy capture. We argue that photophys. properties of perovskites already proved for photovoltaics, also should be of interest in photoredox organic synthesis. Because the key aspects of these two applications are both relying on charge separation and transfer. Here we demonstrated that perovskites nanocrystals are exceptional candidates as photocatalysts for fundamental organic reactions, for example C-C, C-N and C-O bond-formations. Stability of CsPbBr3 in organic solvents and ease-of-tuning their bandedges garner perovskite a wider scope of organic substrate activations. Our low-cost, easy-to-process, highly-efficient, air-tolerant and bandedge-tunable perovskites may bring new breakthrough in organic chem.
As far as I know, this compound(60804-74-2)Category: ruthenium-catalysts can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI