In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Triple-bridged helical binuclear copper(I) complexes: Head-to-head and head-to-tail isomerism and the solid-state luminescence, published in 2020, which mentions a compound: 15418-29-8, mainly applied to copper pyridylphospholane complex preparation luminescence frontier mol orbital; crystal structure copper pyridylphospholane complex, Recommanded Product: 15418-29-8.
A family of helical dinuclear copper(I) pyridylphospholane complexes [Cu2L3X]X (X = BF4-, Cl- and Br-) was prepared The family includes the first examples of this type of complex based on copper(I) chloride and copper(I) bromide. The two isomers typical of this class of compounds, head-to-head and head-to-tail complexes, were studied in solution by spectroscopic and optical methods, and in the solid state by X-ray diffraction. Furthermore, the solid-state luminescence of the complexes at different temperatures was studied, and the results were interpreted using quantum-chem. calculations It was shown that the luminescence of the complexes is attributed to the 3(M + X)LCT transitions.
I hope my short article helps more people learn about this compound(Copper(I) tetra(acetonitrile) tetrafluoroborate)Recommanded Product: 15418-29-8. Apart from the compound(15418-29-8), you can read my other articles to know other related compounds.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI