08/9/2021 News Awesome Chemistry Experiments For Dichloro(benzene)ruthenium(II) dimer

Do you like my blog? If you like, you can also browse other articles about this kind. Recommanded Product: 37366-09-9. Thanks for taking the time to read the blog about 37366-09-9

In an article, published in an article, once mentioned the application of 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer,molecular formula is C12H12Cl4Ru2, is a conventional compound. this article was the specific content is as follows.Recommanded Product: 37366-09-9

Polymers of metal complexes of cyclophanes have interest as potential electrical conductors.We now report a general method of synthesis for bis(eta6-<2n>cyclophane)ruthenium(II) derivatives which provides access to model subunits of such polymers.The synthetic sequence involves capping <2n>cyclophanes with arene-ruthenium(II) complexes, removing the arene cap by hydride reduction followed by treatment with acid, and then coupling the (eta6-<2n>cyclophane)ruthenium(II) solvate with another molecule of <2n>cyclophane.In this way bis(eta6-<22>(1,4)cyclophane)ruthenium(II) bis(tetrafluoroborate) (5), bis(eta6-<22>(1,3)cyclophane)ruthenium(II) bis(tetrafluoroborate) (7), bis(eta6-<23>(1,3,5)cyclophane)ruthenium(II) bis(tetrafluoroborate) (8), and (eta6-<22>(1,4)cyclophane(eta6-<22>(1,3)cyclophane)ruthenium(II) bis(tetrafluoroborate) (6) were synthesized.Treatment of 5 with (eta6-<22>(1,4)cyclophane)ruthenium(II) solvate then gave the tris(eta6-<22>(1,4)cyclophane)diruthenium(II) derivative 13, a model subunit of a transition metal-cyclophane polymer.When 5 was treated with (eta6-hexamethylbenzene)ruthenium(II) solvate, an oligomer, 12, having three ruthenium atoms in the chain, formed.The electrochemical behavior of these new complexes has been examined and provides indirect evidence for intervalence electron transfer in the examples having more than one ruthenium atom.Hydride reduction of (eta6-hexamethylbenzene)(eta6-<22>(1,4)cyclophane)ruthenium(II) bis(tetrafluoroborate), 9, gave (eta4-hexamethyl-1,4-cyclohexadiene)(eta6-<22>(1,4)cyclophane)ruthenium(0), 10, whose structure is established by X-ray crystallographic analysis.An analysis of the electronic and 1H NMR spectra of prototype examples of the <2n>cyclophaneruthenium(II) complexes is reported.Treatment of (eta6-hexamethylbenzene)(eta4-<22>(1,4)cyclophane)ruthenium(0) with acid converts the ruthenium-bound, cyclophane-benzene ring to a cyclohexadienyl moiety as present in 26, whose structure is established by X-ray crystallographic analysis.This novel reaction appears to be general as shown by the conversion of (eta6-hexamethylbenzene)(eta4-<24>(1,2,4,5)cyclophane)ruthenium(0), 28, by acid to 29 and the conversion of bis(hexamethylbenzene)ruthenium(0), 30, to 31.Red-Al(Aldrich) reduction of 31 gives a bis(eta5-hexamethylcyclohexadienyl)ruthenium(II) derivative, 32, an analogue of ruthenocene.Similarly, 26 was reduced by Red-Al to 34, a cyclophane-containing bis(cyclohexadienyl) analogue of ruthenocene.

Do you like my blog? If you like, you can also browse other articles about this kind. Recommanded Product: 37366-09-9. Thanks for taking the time to read the blog about 37366-09-9

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI