Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 15746-57-3, C20H16Cl2N4Ru. A document type is Article, introducing its new discovery., name: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)
Redox-active ruthenium complexes have been widely used in various fields; however, the harsh conditions required for their synthesis are not always conducive to their subsequent use in biological applications. In this study, we demonstrate the spontaneous formation of a derivative of tris(bipyridine)ruthenium at 37C through the coordination of three bipyridyl ligands incorporated into a peptide to a ruthenium ion. Specifically, we synthesized six bipyridyl-functionalized peptides with randomly chosen sequences. The six peptides bound to ruthenium ions and exhibited similar spectroscopic and electrochemical features to tris(bipyridine)ruthenium, indicating the formation of ruthenium complexes as we anticipated. The photo-excited triplet state of the ruthenium complex formed in the peptides exhibited an approximately 1.6-fold longer lifetime than that of tris(bipyridine)ruthenium. We also found that the photo-excited state of the ruthenium complexes was able to transfer an electron to methyl viologen, indicating that the ruthenium complexes formed in the peptides had the same ability to transfer charge as tris(bipyridine)ruthenium. We believe that this strategy of producing ruthenium complexes in peptides under mild conditions will pave the way for developing new metallopeptides and metalloproteins containing functional metal-complexes.
Interested yet? Keep reading other articles of 15746-57-3!, name: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI