Some scientific research about Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II). In my other articles, you can also check out more blogs about 15746-57-3

15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru, belongs to ruthenium-catalysts compound, is a common compound. In a patnet, once mentioned the new application about 15746-57-3, name: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)

4,5-Diazafluorene ligands, (L1) and (L2), have been synthesized from the reaction of 4,5-diazafluorenone-9-hydrazone with 4-(4-fluorophenoxy) benzaldehyde and 4,5-diazafluoren-9-one with 4-(4-fluorophenoxy) benzylamine hydrochloride in dry EtOH. Ru(II) complexes of the ligands Ru(II)-L1 and Ru(II)-L2 were prepared by treating the ligands with Ru(bpy)2CI2 in dry EtOH. The metal-to-ligand ratio of the Ru(II) complexes was found to be 1:1. The ligands and complexes were characterized by elemental analysis and spectra FTIR, UV-vis, 1H NMR, MS, and fluorescence studies.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II). In my other articles, you can also check out more blogs about 15746-57-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI