The important role of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

If you are hungry for even more, make sure to check my other article about 246047-72-3. Synthetic Route of 246047-72-3

Synthetic Route of 246047-72-3. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

A series of seven cyclopent-3-en-1-ylmethylamines bearing one, two, or three methyl substituents at the C2, C3, C4, or Calpha positions, including the unsubstituted parent, was accessed by ring-closing metatheses of alpha,alpha-diallylacetonitrile (or methallyl variants) and alpha,alpha-diallylacetone followed by hydride reductions or reductive amination, or by Curtius degradations of alpha,alpha-dimethyl- and 2,2,3-trimethylcyclopent-3-enylacetic acids. Oxidation of the primary amines with Pb(OAc)4 in CH2Cl2, CHCl3 or benzene in the presence of K2CO3 effected efficient intramolecular aziridinations, in all cases except the alpha-methyl analogue (16), to form the corresponding 1-azatricyclo[2.2.1.02,6]heptanes, including the novel monoterpene analogues, 1-azatricyclene and the 2-azatricyclene enantiomers. The cumulative rate increases of aziridination reactions observed by 1H NMR spectroscopy in CDCl3 resulting from the presence of one or two methyl groups on the cyclopentene double bond, in comparison to the rate of the unsubstituted parent amine (1:17.5:>280), indicate a highly electrophilic intermediate as the nitrene donor and a symmetrical aziridine-like transition state. A mechanism is outlined in which the amine displaces an acetate ligand from Pb(OAc)4 to form a lead(IV) amide intermediate RNHPb(OAc)3 proposed as the actual aziridinating species.

If you are hungry for even more, make sure to check my other article about 246047-72-3. Synthetic Route of 246047-72-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI