The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer, molecular formula is C12H12Cl4Ru2. In a Article,once mentioned of 37366-09-9, Product Details of 37366-09-9
New benzoyl- and naphthoyl-substituted phosphines have been synthesized, which are stable to air and moisture. Testing these so-called phosphomide ligands in the presence of different ruthenium precursors, the hydrogenation of sodium bicarbonate (NaHCO3) to sodium formate (NaHCO2) proceeded with good catalyst turnover numbers in the range of 1300-1600 at 80 C and a total pressure of hydrogen of 60 bar in the absence of amines or other additives. Similarly, catalytic hydrogenations of carbon dioxide, cinnam-, and benzaldehyde were possible with these new ruthenium complexes. As an intermediate of the catalytic cycle the defined ruthenium complex [(eta6-C6H6)-RuCl2(Cy 2P(1-naphthoyl)] (Cy=cyclohexyl) was prepared and characterized by X-ray crystallography. Ruthenium and phosphor work wonders: Air-stable ruthenium phosphomide complexes are active catalysts in the hydrogenation of sodium bicarbonate, carbon dioxide, and carbonyl compounds. Hydrogenation proceeds with high catalyst turnover numbers in the absence of amines or other additives. The application range of these new ruthenium catalysts also includes the hydrogenation of cinnamaldehyde and benzaldehyde. Copyright
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Product Details of 37366-09-9, you can also check out more blogs about37366-09-9
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI