Final Thoughts on Chemistry for Chlorocyclopentadienylbis(triphenylphosphine)ruthenium(II)

If you are hungry for even more, make sure to check my other article about 32993-05-8. Electric Literature of 32993-05-8

Electric Literature of 32993-05-8. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 32993-05-8, Name is Chlorocyclopentadienylbis(triphenylphosphine)ruthenium(II)

The dinuclear dicationic vinylidene complex {[Ru]=C-C(Ph)CH 2C(CH2CN)=C=[Ru]}2+ (7a, [Ru] = Cp(PEt 3)2Ru) is prepared from the reaction of ICH2CN with {[Ru]=C=C(Ph)CH2C?C[Ru]}+ (6a). Deprotonation of 7a by n-Bu4NOH is followed by a cyclization process yielding the stable complex 9a, containing a five-membered carbocyclic ring ligand, which is fully characterized by 2D-NMR analysis and a single-crystal X-ray diffraction analysis. Similarly deprotonation of {[Ru]=C=C(Ph)CH2C(CH 2-COOEt)=C=[Ru]}2+ (8a) gave the stable product lia containing a bridging ligand also with a similar five-membered carbocyclic ring. The cyclization process is affected by an ancillary ligand on the Ru metal center. Thus the analogous dinuclear complex 9b, with a bistriphenylphosphine ligand on one metal, which is prepared in a similar manner from {[Ru]=C=C(Ph)CH2C(CH2CN)=C=[Ru?]}2+ (7b, [Ru?] = Cp(PPh3)2Ru), is unstable, undergoing isomerization to give the dinuclear complex 10b, containing a cyclopropenyl ligand.

If you are hungry for even more, make sure to check my other article about 32993-05-8. Electric Literature of 32993-05-8

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI