Discovery of 37366-09-9

If you are hungry for even more, make sure to check my other article about 37366-09-9. Synthetic Route of 37366-09-9

Synthetic Route of 37366-09-9. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer

New benzene ruthenium(II) aroylhydrazone complexes of general molecular formula [Ru(eta6-C6H6)Cl(L)] (where L = aroylhydrazone ligand) have been synthesized from the reaction of the precursor [Ru(eta6-C6H6)(mu-Cl)Cl]2and aroylhydrazone ligands. The composition of the complexes has been accomplished by elemental analysis and spectral methods (FT-IR, UV-Vis,1H NMR). The molecular structure of complex 4 has been established by single-crystal X-ray structure analysis shows that the aroylhydrazone ligands are coordinated to ruthenium as a bidentate N, O donor and a typical piano stool geometry was observed around ruthenium(II) metal center. All the complexes exhibit two consecutive irreversible oxidations in the potential range +0.74 to +1.17 V (RuII/RuIII;RuIII/RuIV) Vs calomel electrode. Further, in vitro anticancer activity of complexes 1-4 on human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and non-cancerous NIH-3T3 cell line exhibit moderate to excellent cytotoxic activity. It is also evident from IC50values that the complexes are more potent against MCF-7 cells than cisplatin. The superior activity of the complex 4 assumes that presence of electron donating methoxy substituent which makes the ring more reactive. Further, the morphological changes during cell death were investigated by Acridine Orange-Ethidium Bromide (AO-EB) and DAPI staining techniques, which confirm the complex 4 induces cell death only through apoptosis.

If you are hungry for even more, make sure to check my other article about 37366-09-9. Synthetic Route of 37366-09-9

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI