The Absolute Best Science Experiment for 15746-57-3

If you are hungry for even more, make sure to check my other article about 15746-57-3. Reference of 15746-57-3

Reference of 15746-57-3. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)

Synthetic routes were developed to attach three redox-active metal fragments to cross-conjugated 3-methylidenepentadiyne covalently expanded by diazafluorenylidene: The two alkyne termini of this new ligand were end-capped via a phenylene spacer with ethynyl ferrocene, and a [Ru(bpy)2]2+ fragment was coordinated in the diimine binding site. The photophysical and electrochemical properties of both the diferrocenyl-terminated ligand and its corresponding Ru-complex were investigated by UV-vis absorption spectroscopy and cyclic voltammetry. The absorption data reveal significant interactions of the metal centers with the cross-conjugated ligand system. In the electrochemical experiments the ferrocenyl and the ruthenium centers could be addressed individually as they are separated by almost 1 V. While the presence of the Ru-fragment manifests itself in the reduction potential of the diazafluorenylidene-ligand, communication between the ferrocenyl end-caps on one hand and between the ferrocenes and the Ru-fragment on the other appears to be reduced through the freely rotating phenylene spacers.

If you are hungry for even more, make sure to check my other article about 15746-57-3. Reference of 15746-57-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI