The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.20759-14-2, Name is Ruthenium(III) chloride hydrate, molecular formula is Cl3H2ORu. In a Article£¬once mentioned of 20759-14-2, Formula: Cl3H2ORu
The role of the central atom in structure and reactivity of polyoxometalates with adjacent d-electron metal sites. Computational and experimental studies of y-[(Xn+O4)RuIII 2(OH)2(MFM)10O32] (8-n)- for MFM = Mo and W, and X = AlIII, SiIV, Pv
The role of the central atom X in the structure and reactivity of di-Ru-substituted y-Keggin polyoxometalates (POMs), y-[(Xn+O 4)RuIII2(OH)2(MFM) 10O32](8-n)-, where MFM = Mo and W, and X = AlIII, SiIV, Pv, and SVI, was computationally investigated. It was shown that for both MFM -Mo and W the nature of X is crucial in determining the lower lying electronic states of the polyoxoanions, which in turn likely significantly impacts their reactivity. For the electropositive X = AlIII, the ground state is a low-spin state, while for the more electronegative X = SVI the ground state is a high-spin state. In other words, the heteroatom X can be an “internal switch” for defining the ground electronic states of the gamma-M2-Keggin POMs. The obtained trends, in general, are less pronounced for MFM = Mo than for W. On the basis of the comparison of the calculated energy gaps between low-spin and high-spin states of polytungstates and polymolybdates, we predict that the gamma-M 2-Keggin polytungstates could be more reactive than their polymolybdate analogues. For purposes of experimental verification the computationally predicted and evaluated polytungstate gamma-[(SiO 4)RuIII2(OH)2- (OH2) 2W10O32]4- was prepared and characterized.
The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 20759-14-2 is helpful to your research., Formula: Cl3H2ORu
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI