Top Picks: new discover of 15746-57-3

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II). In my other articles, you can also check out more blogs about 15746-57-3

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru. In a Article£¬once mentioned of 15746-57-3, Safety of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)

Room-temperature photochromism in cis- and trans-[Ru(bpy) 2(dmso)2]2+

We report on phototriggered Ru-S ? Ru-O and thermal Ru-O ? Ru-S intramolecular linkage isomerizations in cis- and trans-[Ru(bpy) 2(dmso)2]2+. The cis complex features only S-bonded sulfoxides (cis-[S,S]), whereas the trans isomer is characterized by S- and O-bonded dmso ligands. Both cis-[S,S] and trans-[S,O] exhibit photochromism at room temperature in dmso solution and ionic liquid (IL). Rates of reaction in IL were monitored by UV-visible spectroscopy and are similar to those reported in dmso solution (kO?S ranges from ?10 -3 to 10-4 s-1). Cyclic voltammetric measurements of cis-[S,S] and trans-[S,O] are consistent with an electrochemically triggered linkage isomerism mechanism. While both cis-[S,S] and trans-[S,O] are photochromic at room temperature, neither complex is emissive. However, upon cooling to 77 K, cis-[S,S] exhibits LMCT (ligand-to-metal charge transfer) emission typical of many ruthenium polypyridine complexes. In contrast to cis-[S,S], trans-[S,O] does not show any detectable emission even at 77 K.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Safety of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II). In my other articles, you can also check out more blogs about 15746-57-3

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI