Application In Synthesis of Copper(I) tetra(acetonitrile) tetrafluoroborate. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Copper(I) tetra(acetonitrile) tetrafluoroborate, is researched, Molecular C8H12BCuF4N4, CAS is 15418-29-8, about Copper(I)-Catalyzed Enantioconvergent Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-Quadrant Structure Modification of Chiral Bisphosphine Ligands. Author is Iwamoto, Hiroaki; Endo, Kohei; Ozawa, Yu; Watanabe, Yuta; Kubota, Koji; Imamoto, Tsuneo; Ito, Hajime.
The first copper(I)-catalyzed enantioselective borylation of racemic benzyl chlorides has been realized by a quadrant-by-quadrant structure modulation of QuinoxP*-type bisphosphine ligands. This reaction converts racemic mixtures of secondary benzyl chlorides into the corresponding chiral benzylboronates with high enantioselectivity (up to 92 % ee). The results of mechanistic studies suggest the formation of a benzylic radical intermediate. The results of DFT calculations indicate that the optimal bisphosphine-copper(I) catalyst engages in noncovalent interactions that efficiently recognize the radical intermediate, and leads to high levels of enantioselectivity.
Although many compounds look similar to this compound(15418-29-8)Application In Synthesis of Copper(I) tetra(acetonitrile) tetrafluoroborate, numerous studies have shown that this compound(SMILES:[Cu+](N#CC)(N#CC)(N#CC)N#CC.[B+3]([F-])([F-])([F-])[F-]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI