Final Thoughts on Chemistry for 60804-74-2

Although many compounds look similar to this compound(60804-74-2)SDS of cas: 60804-74-2, numerous studies have shown that this compound(SMILES:F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F.C1(C2=NC=CC=C2)=NC=CC=C1.C3(C4=NC=CC=C4)=NC=CC=C3.C5(C6=NC=CC=C6)=NC=CC=C5.[Ru+2]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

SDS of cas: 60804-74-2. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Tris(2,2′-bipyridine)ruthenium bis(hexafluorophosphate), is researched, Molecular C30H24F12N6P2Ru, CAS is 60804-74-2, about Nickel/Photoredox Dual Catalytic Cross-Coupling of Alkyl and Amidyl Radicals to Construct C(sp3)-N Bonds. Author is Zhou, Shaofang; Lv, Kang; Fu, Rui; Zhu, Changlei; Bao, Xiaoguang.

The construction of C(sp3)-N bonds via direct radical-radical cross-coupling under benign conditions is a desirable but challenging approach. Herein, the cross-coupling of alkyl and amidyl radicals to build aliphatic C-N bonds in a concise, mild, and oxidant-free manner is implemented by nickel/photoredox dual catalysis. In this protocol, the single electron transfer strategy is successfully employed to generate N- and C-centered radicals from sulfonyl azides/azidoformates and alkyltrifluoroborates, resp. The photocatalyst-induced triplet-triplet energy-transfer mechanism, however, might not be applicable to this reaction. The oxidative quenching pathway of the excited photocatalyst (RuII/*RuII/RuIII/RuII) combined with a possible NiI/NiII/NiIII/NiI catalytic cycle is proposed to account for the nickel/photoredox dual-catalyzed C(sp3)-N bond formation based on synergistic exptl. and computational studies.

Although many compounds look similar to this compound(60804-74-2)SDS of cas: 60804-74-2, numerous studies have shown that this compound(SMILES:F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F.C1(C2=NC=CC=C2)=NC=CC=C1.C3(C4=NC=CC=C4)=NC=CC=C3.C5(C6=NC=CC=C6)=NC=CC=C5.[Ru+2]), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI