New explortion of 138984-26-6

Although many compounds look similar to this compound(138984-26-6)Computed Properties of C24H40N4O4Rh2, numerous studies have shown that this compound(SMILES:C12=O[Rh+2]3(O=C4[N-]5CCCCC4)([N-]6C(CCCCC6)=O7)[N-](CCCCC8)C8=O[Rh+2]357[N-]1CCCCC2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Computed Properties of C24H40N4O4Rh2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Dirhodium(II) tetrakis(caprolactam), is researched, Molecular C24H40N4O4Rh2, CAS is 138984-26-6, about A highly regio-, diastereo- and enantioselective intramolecular cyclopropanation reaction of a racemic α-diazo ketone catalyzed by chiral ortho-metalated dirhodium(II) compounds. Author is Perez-Prieto, Julia; Stiriba, Salah-Eddine; Moreno, Eduardo; Lahuerta, Pascual.

A series of racemic dirhodium(II) compounds with two ortho-metalated aryl phosphine ligands in a head-to-tail arrangement Rh2(O2CR)2(pc)2 (pc = ortho-metalated aryl phosphine) were tested in the regio- and stereoselective cyclopropanation of racemic 1-diazo-6-methyl-3-(2-propenyl)-5-hepten-2-one, which possesses two different reactive C:C double bonds for a five-membered ring formation. The complexes Rh2(O2CCH3)2(pc)2 {pc = [(C6H4)P(C6H5)2], [(p-CH3C6H3)P(p-CH3C6H4)2], and [(C6H4)P(C6H5)(C6F5)]} successfully enhanced the cyclopropanation of trisubstituted vs. monosubstituted C:C bonds to give an 80:20 selectivity ratio. The reaction occurred with excellent diastereoselectivity; the syn-products were the only stereoisomers observed in the whole series of the catalysts. Enantioenriched products were obtained when enantiomerically pure dirhodium(II) complexes were used.

Although many compounds look similar to this compound(138984-26-6)Computed Properties of C24H40N4O4Rh2, numerous studies have shown that this compound(SMILES:C12=O[Rh+2]3(O=C4[N-]5CCCCC4)([N-]6C(CCCCC6)=O7)[N-](CCCCC8)C8=O[Rh+2]357[N-]1CCCCC2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI