The influence of catalyst in reaction 138984-26-6

Compounds in my other articles are similar to this one(Dirhodium(II) tetrakis(caprolactam))Name: Dirhodium(II) tetrakis(caprolactam), you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 138984-26-6, is researched, SMILESS is C12=O[Rh+2]3(O=C4[N-]5CCCCC4)([N-]6C(CCCCC6)=O7)[N-](CCCCC8)C8=O[Rh+2]357[N-]1CCCCC2, Molecular C24H40N4O4Rh2Journal, Article, Water Science and Technology called Degradation of azo dye with dirhodium(II) caprolactamate as heterogeneous catalyst, Author is Elsherbiny, Abeer S.; El-Khalafy, Sahar H.; Doyle, Michael P., the main research direction is azo dye rhodium caprolactamate heterogeneous catalyst degradation.Name: Dirhodium(II) tetrakis(caprolactam).

The kinetics of the oxidative degradation of an azo dye Metanil Yellow (MY) was investigated in aqueous solution using dirhodium(II) caprolactamate, Rh2(cap)4, as a catalyst in the presence of H2O2 as oxidizing agent. The reaction process was followed by UV/Vis spectrophotometer. The decolorization and degradation kinetics were investigated and both followed a pseudo-first-order kinetic with respect to the [MY]. The effects of various parameters such as H2O2 and dye concentrations, the amount of catalyst and temperature have been studied. The studies show that Rh2(cap)4 is a very effective catalyst for the formation of hydroxyl radicals HO* which oxidized and degraded about 92% of MY into CO2 and H2O after 24 h as measured by total carbon analyzer.

Compounds in my other articles are similar to this one(Dirhodium(II) tetrakis(caprolactam))Name: Dirhodium(II) tetrakis(caprolactam), you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI