Safety of 1,2-Benzisoxazole. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 1,2-Benzisoxazole, is researched, Molecular C7H5NO, CAS is 271-95-4, about Stability, degradation impurities and decomposition kinetics for paliperidone from osmotic tablets. Author is Cassol, Jose Pedro Etchepare; de Souza Barbosa, Fabio; Garcia, Cassia V.; Mendez, Andreas S. L..
The antipsychotic paliperidone was investigated with a focus on stability, degradation impurities and kinetics reaction profile. Osmotic tablets 3 mg (OROS) were subjected to extraction in an ultrasonic bath and the resulting acidic solution was stressed by forced conditions. Degraded samples were monitored by HPLC-DAD in different storage times for acidic and alk. hydrolysis, oxidation, heat and photolysis. Photolysis was shown to be a strong degradation factor, with a drug content of 24.64% remaining after 24 h. Oxidation (H2O2 18%) caused a slow decomposition, with a drug content of 83.49% remaining after 72 h. Through kinetics graphics, first-order reactions were found for oxidation, heat and photolysis. By UPLC-MS anal., the degraded matrix could be investigated for identification of impurities with m/z 445.3128, m/z 380.8906, m/z 364.9391, m/z 232.9832 and m/z 217.0076, allowing the identification of derivatives N-oxide and with modifications in the lactam, benzisoxazole and pyrimidine rings. Paliperidone in liquid state, like anal. solutions or formulation, must be carefully handled to avoid drug exposure, specially in storage conditions.
As far as I know, this compound(271-95-4)Safety of 1,2-Benzisoxazole can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI