Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, Non-U.S. Gov’t, Organic Letters called NaI/PPh3-Mediated Photochemical Reduction and Amination of Nitroarenes, Author is Qu, Zhonghua; Chen, Xing; Zhong, Shuai; Deng, Guo-Jun; Huang, Huawen, which mentions a compound: 376581-24-7, SMILESS is OB(C1=CC=C2N=CC=CC2=C1)O, Molecular C9H8BNO2, Computed Properties of C9H8BNO2.
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerated a broad range of reducible functional groups such as halogen (Cl, Br and even I), aldehyde, ketone, carboxyl and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
As far as I know, this compound(376581-24-7)Computed Properties of C9H8BNO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI