Awesome and Easy Science Experiments about 19481-82-4

As far as I know, this compound(19481-82-4)Synthetic Route of C3H4BrN can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Synthetic Route of C3H4BrN. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 2-Bromopropanenitrile, is researched, Molecular C3H4BrN, CAS is 19481-82-4, about Atom-transfer radical polymerization of acrylonitrile under microwave irradiation. Author is Hou, Chen; Guo, Zhenliang; Liu, Junshen; Ying, Liang; Geng, Dongdong.

A single-pot atom-transfer radical polymerization under microwave irradiation was first used to successfully synthesize polyacrylonitrile. This was achieved with FeBr2/isophthalic acid as the catalyst and 2-bromopropionitrile as the initiator. With the same exptl. conditions, the apparent rate constant under microwave irradiation was higher than that under conventional heating. An FeBr2/isophthalic acid ratio of 1:2 not only gave the best control of mol. weight and its distribution but also provided a rather rapid reaction rate. The polymers obtained were end-functionalized by bromine atoms, and they were used as macroinitiators to proceed the chain extension polymerization

As far as I know, this compound(19481-82-4)Synthetic Route of C3H4BrN can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI