Reference of 2-Bromopropanenitrile. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 2-Bromopropanenitrile, is researched, Molecular C3H4BrN, CAS is 19481-82-4, about Pyridylphosphine ligands for iron-based atom transfer radical polymerization of methyl methacrylate and styrene. Author is Xue, Zhigang; Lee, Bae Wook; Noh, Seok Kyun; Lyoo, Won Seok.
Two pyridylphosphine ligands, 2-(diphenylphosphino)pyridine (DPPP) and 2-[(diphenylphosphino)methyl]pyridine (DPPMP), were investigated as complexing ligands in the iron-mediated atom transfer radical polymerization (ATRP) of Me methacrylate (MMA) and styrene with various initiators and solvents. In studies of their ATRP behavior, the FeBr2/DPPP catalytic system was a more efficient ATRP catalyst for the MMA polymerization than the other complexes studied in this paper. Most of these systems were well controlled with a linear increase in the number-average mol. weights (Mn) vs. conversion and relatively low mol. weight distributions (Mw/Mn = 1.15-1.3) being observed throughout the reactions, and the measured mol. weights matched the predicted values with the DPPP ligand. The polymerization rate of MMA attained a maximum at a ratio of ligand to metal of 2:1 in p-xylene at 80 °C. The polymerization was faster in polar solvents than in p-xylene. The 2-bromopropionitrile (BPN) initiated ATRP of MMA with the FeX2/DPPP catalytic system (X = Cl, Br) was able to be controlled in p-xylene at 80 °C. The polymerization of styrene was able to be controlled using the PECl/FeCl2/DPPP system in DMF at 110 °C.
There are many compounds similar to this compound(19481-82-4)Reference of 2-Bromopropanenitrile. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI