Decrypt The Mystery Of 15418-29-8

Compound(15418-29-8)SDS of cas: 15418-29-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Copper(I) tetra(acetonitrile) tetrafluoroborate), if you are interested, you can check out my other related articles.

SDS of cas: 15418-29-8. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Copper(I) tetra(acetonitrile) tetrafluoroborate, is researched, Molecular C8H12BCuF4N4, CAS is 15418-29-8, about Copper-Catalyzed Azide-Ynamide Cyclization to Generate α-Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N-Heterocycles. Author is Liu, Xin; Wang, Ze-Shu; Zhai, Tong-Yi; Luo, Chen; Zhang, Yi-Ping; Chen, Yang-Bo; Deng, Chao; Liu, Rai-Shung; Ye, Long-Wu.

Here an efficient copper-catalyzed cascade cyclization of azide-ynamides via α-imino copper carbene intermediates is reported, representing the first generation of α-imino copper carbenes from alkynes. This protocol enables the practical and divergent synthesis of an array of polycyclic N-heterocycles, e.g., I, in generally good to excellent yields with broad substrate scope and excellent diastereoselectivities. Moreover, an asym. azide-ynamide cyclization has been achieved with high enantioselectivities (up to 98:2 e.r.) by employing BOX-Cu complexes as chiral catalysts. Thus, this protocol constitutes the first example of an asym. azide-alkyne cyclization. The proposed mechanistic rationale for this cascade cyclization is further supported by theor. calculations

Compound(15418-29-8)SDS of cas: 15418-29-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Copper(I) tetra(acetonitrile) tetrafluoroborate), if you are interested, you can check out my other related articles.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI