So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Mosnacek, J.; Eckstein-Andicsova, A.; Borska, K. researched the compound: 2-Bromopropanenitrile( cas:19481-82-4 ).Computed Properties of C3H4BrN.They published the article 《Ligand effect and oxygen tolerance studies in photochemically induced copper mediated reversible deactivation radical polymerization of methyl methacrylate in dimethyl sulfoxide》 about this compound( cas:19481-82-4 ) in Polymer Chemistry. Keywords: methyl methacrylate dimethyl sulfoxide photochem reversible deactivation radical polymerization; oxygen tolerance ligand effect. We’ll tell you more about this compound (cas:19481-82-4).
Well-defined poly(Me methacrylate) was prepared by a photochem. induced reversible deactivation radical polymerization using 50-200 ppm of a copper catalyst in DMSO under both an inert atm. and in the presence of a limited amount of air. The effect of the ligand structure and concentration on the kinetics and polymerization control was investigated. Under an inert atm., equimolar amounts of the ligand, such as tris(2-pyridylmethyl)amine (TPMA) or N,N,N’,N”,N”-pentamethyldiethylenetriamine (PMDETA), were sufficient to achieve well-controlled polymerization of MMA. In the presence of air, a well-controlled polymerization started just after some induction time, which was dependent on the concentration of the TPMA ligand. Irradiation at λ > 350 nm provided both a photochem. reduction of an initially-added copper(II) catalyst, which complexed with either PMDETA or TPMA ligand, to a copper(I) activator, and a photochem. regeneration of the copper(I) activator after its oxidation by oxygen. Successful chain-extension polymerization performed without degassing of the polymerization mixture confirmed the high degree of livingness of the photopolymerization system even in the presence of a limited amount of air.
There is still a lot of research devoted to this compound(SMILES:CC(Br)C#N)Computed Properties of C3H4BrN, and with the development of science, more effects of this compound(19481-82-4) can be discovered.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI