Awesome and Easy Science Experiments about 19481-82-4

In some applications, this compound(19481-82-4)Synthetic Route of C3H4BrN is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Effects of Initiator Structure on Activation Rate Constants in ATRP, published in 2007-03-20, which mentions a compound: 19481-82-4, mainly applied to copper mediated ATRP initiator structure influence, Synthetic Route of C3H4BrN.

Activation rate constants (kact) for a variety of initiators for Cu-mediated ATRP were determined under the same conditions. The ratio of the activation rate constants for the studied alkyl (pseudo)halides exceeds 1 million times. The activation rate constants increase with initiator substitution (e.g., for primary, secondary, and tertiary α-bromoesters the ratios are ∼110:80), with the radical stabilizing α-substituent (e.g., alkyl bromides with -C(O)NEt2, -Ph, -C(O)OMe, and -CN groups the ratios are ∼1:4:8:600 but with both α-Ph and α-C(O)OEt∼140,000), and with the leaving atom/group (e.g., for Me 2-halopropionates: chloro:bromo:iodo ∼1:20:35, but benzyl bromide is ∼10,000 more reactive than the corresponding isothiocyanate/thiocyanate).

In some applications, this compound(19481-82-4)Synthetic Route of C3H4BrN is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI