Application of 19481-82-4

In some applications, this compound(19481-82-4)Name: 2-Bromopropanenitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Name: 2-Bromopropanenitrile. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 2-Bromopropanenitrile, is researched, Molecular C3H4BrN, CAS is 19481-82-4, about Quantitative structure-reactivity modeling of copper-catalyzed atom transfer radical polymerization. Author is di Lena, Fabio; Chai, Christina L. L..

The authors present the first successful application of in silico modeling to the construction of quant. and predictive relationships between the set of constants kact, kdeact and KATRP and the structures and properties of various ATRP catalysts and initiators. The results are consistent not only with the generally accepted ATRP mechanistic picture but also provide valuable insights into this complex polymerization reaction. The models, built using the genetic function approximation algorithm, highlight and quantify the pivotal roles played in the ATRP process by energetic and steric factors of both catalysts and initiators as well as by the reaction medium. Moreover, the models suggest the existence of long-range interactions in catalyst-initiator recognition and subsequent binding. The authors believe that the approach will prove to be a powerful tool for the discovery of improved catalysts for ATRP.

In some applications, this compound(19481-82-4)Name: 2-Bromopropanenitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI