Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 15746-57-3, C20H16Cl2N4Ru. A document type is Article, introducing its new discovery., HPLC of Formula: C20H16Cl2N4Ru
Electron transfer can readily occur over long (? 15 A) distances. Usually reaction rates decrease with increasing distance between donors and acceptors, but theory predicts a regime in which electron-transfer rates increase with increasing donor-acceptor separation. This counter-intuitive behavior can result from the interplay of reorganization energy and electronic coupling, but until now experimental studies have failed to provide unambiguous evidence for this effect. We report here on a homologous series of rigid rodlike donor-bridge-acceptor compounds in which the electron-transfer rate increases by a factor of 8 when the donor-acceptor distance is extended from 22.0 to 30.6 A, and then it decreases by a factor of 188 when the distance is increased further to 39.2 A. This effect has important implications for solar energy conversion.
Interested yet? Keep reading other articles of 15746-57-3!, HPLC of Formula: C20H16Cl2N4Ru
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI