Sep 2021 News Some scientific research about Ruthenium(III) chloride

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: Ruthenium(III) chloride. In my other articles, you can also check out more blogs about 10049-08-8

10049-08-8, Name is Ruthenium(III) chloride, molecular formula is Cl3Ru, belongs to ruthenium-catalysts compound, is a common compound. In a patnet, once mentioned the new application about 10049-08-8, name: Ruthenium(III) chloride

In-situ infrared studies performed with operating Ru-complex-sensitized wet solar cells using a total reflection technique reveal that the ruthenium complex (both tri- and mononuclear) attached to TiO2 is photoelectrochemically transformed and irreversibly consumed under conditions of insufficient regeneration by iodide or from the oxide within the nanocrystalline TiO2 pores. The sensitizer [(Ru(bpy)2(CN)2)2Ru(bpca)2] 2- (bpy is 2,2a¿²-bipyridine, bpca is 2,2a¿²-bipyridine-4,4a¿²-dicarboxylate) decomposes into fragments; one of them was identified to be Ru(bpy)2(CN)2. For the sensitizer Ru(bpca)2(SCN)2, it is shown that a molecular fragment (absorbing at 2013 cm-1) is generated which is diffusing out of the nanostructured TiO2 layer. Due to its correlation with the photocurrent density, it is identified as a product of the oxidized sensitizer. Due to a high serial resistance introduced by the total reflection element and the resulting low fillfactor of the sensitization cell during in-situ measurements, only small photocurrents (5-10 I¼A cm-2) could be passed through the sensitizing interface. Since the rate of product formation should be proportional to the ratio of photocurrent density to iodide concentration, the iodide concentration was correspondingly reduced (1-10 mM) as compared to the conditions in a solar cell (10 mA cm-2, 1 M). This spectroscopic technique was developed because efforts to produce stable sensitization solar cells proved to be unsuccessful due to sealing problems. Our experiments do not seem to permit extrapolation to 107-108 electron transfer numbers for sensitizing Ru complexes, and real long-term testing is required for reevaluating long-term performance.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.name: Ruthenium(III) chloride. In my other articles, you can also check out more blogs about 10049-08-8

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI