Archives for Chemistry Experiments of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)

If you are interested in 15746-57-3, you can contact me at any time and look forward to more communication.Synthetic Route of 15746-57-3

Synthetic Route of 15746-57-3. Let’s face it, organic chemistry can seem difficult to learn. Especially from a beginner’s point of view. Like 15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II). In a document type is Article, introducing its new discovery.

A new 2-pyridyl-1,2,3-triazole (pytri) ligand, TPA-pytri, substituted with a triphenylamine (TPA) donor group on the 5 position of the pyridyl unit was synthesized and characterized. Dichloroplatinum(II), bis(phenylacetylide)platinum(II), bromotricarbonylrhenium(I), and bis(bipyridyl)ruthenium(II) complexes of this ligand were synthesized and compared to complexes of pytri ligands without the TPA substituent. The complexes of unsubstituted pytri ligands show metal-to-ligand charge-transfer (MLCT) absorption bands involving the pytri ligand in the near-UV region. These transitions are complemented by intraligand charge-transfer (ILCT) bands in the TPA-pytri complexes, resulting in greatly improved visible absorption (lambdamax = 421 nm and ? = 19800 M-1 cm-1 for [Pt(TPA-pytri)Cl2]). The resonance Raman enhancement patterns allow for assignment of these absorption bands. The [Re(TPA-pytri)(CO)3Br] and [Pt(TPA-pytri)(CCPh)2] complexes were examined with time-resolved infrared spectroscopy. Shifts in the C?C and C?O stretching bands revealed that the complexes form states with increased electron density about their metal centers. [Pt(TPA-pytri)Cl2] is unusual in that it is emissive despite the presence of deactivating d-d states, which prevents emission from the unsubstituted pytri complex.

If you are interested in 15746-57-3, you can contact me at any time and look forward to more communication.Synthetic Route of 15746-57-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI