A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, molecular formula is C46H65Cl2N2PRu. In a Article,once mentioned of 246047-72-3, Computed Properties of C46H65Cl2N2PRu
Ruthenium hydrides were found to promote the positional isomerization of 1,3-dienes into more highly substituted 1,3-dienes in a stereoconvergent manner. The reaction can be conducted in one pot starting with terminal alkynes and alkenes by triggering decomposition of the Grubbs catalyst into a ruthenium hydride, which promotes the dienyl isomerization. The presence of an alcohol additive plays a helpful role in the reaction, significantly increasing the chemical yields. Mechanistic studies are consistent with hydrometalation of the geminally substituted alkene of the 1,3-diene and transit of the ruthenium atom across the diene framework via a pi-allylruthenium intermediate.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.HPLC of Formula: C46H65Cl2N2PRu, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 246047-72-3, in my other articles.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI