A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru. In a Article,once mentioned of 15746-57-3, Safety of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)
Photoactivated anticancer chemotherapy distinguishes itself by its high selectivity by virtue of the spatiotemporal control of irradiation. However, short photoactivation wavelengths limit its application. Herein, an amphiphilic Ru(ii) complex, cis-[Ru(bpy)2(C18H37CN)2]2+ (bpy = 2,2?-bipyridine), was embedded along with a poly(ethylene glycol, PEG)-modified lipid onto the surfaces of oleate-capped lanthanide-doped upconversion nanoparticles (UCNPs). The resultant core-shell hybrid system is water-dispersible, stable in the dark, and releases a DNA covalent-binding agent of [Ru(bpy)2(H2O)2]2+ upon 980 nm laser irradiation, providing guidelines for developing near-infrared (NIR) light triggered chemotherapeutics.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Safety of Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 15746-57-3, in my other articles.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI