The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru. In a Article,once mentioned of 15746-57-3, Computed Properties of C20H16Cl2N4Ru
A new polyazamacrocycle (L) containing two 2,2?-bipyridino (bpy) units, where the heteroaromatic nitrogen atoms point outwards from the macrocyclic cavity, was synthesized and characterized by elemental analysis, ESI-MS, 1H and 13C NMR, FTIR and TGA. Five protonation constants involving aliphatic nitrogens with log K in the range 9.39-3.07 were determined by potentiometry and NMR and a sixth protonation (log K = 2.2) involving a bipyridine moiety could be detected by UV-Vis and NMR titrations. The interaction of L with the cyanometallate anions [Pt(CN)4] 2- and [Co(CN)6]3- was studied by potentiometry yielding respectively log K values in the ranges 4.0-6.4 and 5.2-10.5, covering protonation degrees from 1 to 5. Studies on L with [Ru(CN)6] 4- led to early precipitation preventing potentiometry, but crystals of [H4L][Ru(CN)6]·10H2O and also of [H2L](ClO4)2·4H2O suitable for X-ray diffraction could be obtained and the crystalline structures are described. The interaction of L with Zn2+ was investigated by potentiometry and UV-Vis showing the formation of mono- and dinuclear complexes involving the bipyridines. The macrocycle was used as a bridging ligand for the successful synthesis of a new dinuclear [(Ru(bpy)2) 2(L)](PF6)4·4HPF6 complex that was fully characterized. The protonation (log K in the range 9.9-1.6) and coordination features of this compound towards Cu2+ and Zn 2+ were explored by UV-Vis absorption and emission spectroscopies.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Computed Properties of C20H16Cl2N4Ru, you can also check out more blogs about15746-57-3
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI