A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, molecular formula is C46H65Cl2N2PRu. In a Article,once mentioned of 246047-72-3, Quality Control of: (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium
Gradient-corrected (BP86) and hybrid (M06-L) density functional calculations were used to study the relative stability of cis and /rans-dichloro X-chelated benzylldene ruthenium complexes (X = O, S, Se, N, P). Calculations In the gas phase differed from experimental results, predicting the /rans-dichloro configuration as being more stable In every case. The addition of Poisson-Boltzmann (PBF) continuum approximation (dlchloromethane) corrected the disagreement and afforded energies consistent with experimental results. Novel N, Se, and P chelated ruthenium olefin metathesis complexes were synthesized to evaluate calculation predictions. These findings reinforce the Importance of including solvent corrections In DFT calculations of ruthenium metathesis catalysts and predict that stronger sigma donors as chelating atoms tend to electronically promote the unusual and less active cis-dichloro configuration.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Quality Control of: (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium. In my other articles, you can also check out more blogs about 246047-72-3
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI