Interested yet? Keep reading other articles of 37366-09-9!, Safety of Dichloro(benzene)ruthenium(II) dimer
Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 37366-09-9, C12H12Cl4Ru2. A document type is Article, introducing its new discovery., Safety of Dichloro(benzene)ruthenium(II) dimer
(4S)-4-Isopropyl-2-(3-nitrophenyl)-4,5-dihydrooxazole ((S)-Phox) is introduced as a novel chiral auxiliary for the asymmetric synthesis of ruthenium polypyridyl complexes. A simply accessible (S)-Phox-bearing precursor serves as the starting point for diastereoselective coordination chemistry: The stereogenic carbon atom of the cyclometalating auxiliary controls the spatial arrangement of incoming 1,10-phenanthrolines during ligand substitution reactions (ratio Lambda:Delta up to 14:1), and further precipitation affords diastereopure compounds. In the following key step, the labilization of the auxiliary ligand is achieved by reduction, thus permitting its replacement against a third polypyridyl ligand with complete retention of the configuration at the metal center (er > 99:1) under mildly acidic conditions, in contrast with previously developed systems that require strong acid. On the basis of results of NMR experiments and X-ray analysis obtained for intermediate compounds, mechanistic considerations for the formation of diastereomeric complexes were made, revealing a Delta ? Lambda isomerization as the reason for the observed limitations in selectivity optimization. This work expands the pool of methods available for the asymmetric synthesis of tris-heteroleptic ruthenium polypyridyl complexes and additionally may serve as an inspiration for the synthesis of other nonracemic octahedral chiral-at-metal compounds.
Interested yet? Keep reading other articles of 37366-09-9!, Safety of Dichloro(benzene)ruthenium(II) dimer
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI