Discovery of Chlorocyclopentadienylbis(triphenylphosphine)ruthenium(II)

If you are interested in 32993-05-8, you can contact me at any time and look forward to more communication.Electric Literature of 32993-05-8

Electric Literature of 32993-05-8. Let’s face it, organic chemistry can seem difficult to learn. Especially from a beginner’s point of view. Like 32993-05-8, Name is Chlorocyclopentadienylbis(triphenylphosphine)ruthenium(II). In a document type is Article, introducing its new discovery.

Hexasubstitution of apical triflate ligands in the octahedral clusters [M]2[Mo6X8(CF3SO3) 6] (M = n-Bu4N or Cs, X = Br or I) and monosubstitution in [n-Bu4N]2[Mo6Br13(CF 3SO3)] was carried out in tetrahydrofuran at 60C with simple pyridines and then extended to organometallic pyridines, yielding cluster-cored stars, and to dendronic polyallyl-and polyferrocenylpyridines, yielding cluster-cored polyallyl and polyferrocenyl dendrimers and dendrons. The orange pyridine-substituted clusters, whose pyridine protons are deshielded in 1H NMR (a practical tool for characterization), are air-stable and thermally stable with simple pyridines, light- and air-sensitive with organometallic pyridines, and air-fragile and thermally fragile with large dendronized pyridines.

If you are interested in 32993-05-8, you can contact me at any time and look forward to more communication.Electric Literature of 32993-05-8

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI