A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, molecular formula is C46H65Cl2N2PRu. In a Article,once mentioned of 246047-72-3, Computed Properties of C46H65Cl2N2PRu
A deuterium labeling study was undertaken to determine the mechanism of olefin isomerization during the metathesis reactions catalyzed by a second-generation Grubbs catalyst (2). The reaction of allyl-1,1-d2 methyl ether with 2 at 35C was followed by 1H and 2H NMR spectroscopy. The evidence of deuterium incorporation at the C-2 position of the isomerized product, trans-propenyl methyl ether, led to the conclusion that a metal hydride addition – elimination mechanism was operating under these conditions. Consequently, complex 8, an analogue of 2 bearing deuterated o-methyl groups on the aromatic rings of the NHC ligand, was synthesized to investigate the role of the NHC ligand in the formation of hydride species. Thermal decomposition of benzylidene 8 and methylidene 8? was monitored by 2H NMR spectroscopy; no deuteride complex was detected in either case. The decomposition mixtures were tested for isomerization activity with benchmark 1-octene but did not match the isomerization rates observed with 2 under similar metathesis conditions. Reaction of complex 8 with various olefmic substrates not only confirmed the formation of a deuteride complex but also revealed the existence of a competitive H/D exchange process between the CD 3 groups on the NHC ligand and the C-H bonds of the substrate. We propose that the exchange is promoted by a ruthenium dihydride intermediate whose formation is closely related to the methylidene decomposition.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Computed Properties of C46H65Cl2N2PRu, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 246047-72-3, in my other articles.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI