A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, molecular formula is C46H65Cl2N2PRu. In a Article,once mentioned of 246047-72-3, category: ruthenium-catalysts
3-Substituted cis-cyclooctenes (3RCOEs, R = methyl, ethyl, hexyl, and phenyl) were synthesized and polymerized, and the polymers therefrom were hydrogenated to prepare model linear low density polyethylene (LLDPE) samples. The ring-opening metathesis polymerization (ROMP) of the 3RCOEs using Grubbs’ catalyst proceeded in a regio- and stereoselective manner to afford polyoctenamers [poly(3RCOE)] exhibiting remarkably high head-to-tail regioregularity and high trans-stereoregularity. The overall selectivity increases with the increasing size of the R substituent. Hydrogenation of poly(3RCOE)s afforded precision LLDPEs with R substituents on every eighth backbone carbon.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.category: ruthenium-catalysts, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 246047-72-3, in my other articles.
Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI