Final Thoughts on Chemistry for 246047-72-3

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 246047-72-3, help many people in the next few years., Synthetic Route of 246047-72-3

Synthetic Route of 246047-72-3, An article , which mentions 246047-72-3, molecular formula is C46H65Cl2N2PRu. The compound – (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium played an important role in people’s production and life.

A novel tandem reaction of cyclopentadiene leading to high value linear chemicals via ruthenium catalyzed ring opening cross metathesis (ROCM), followed by cross metathesis (CM) is reported. The ROCM of cyclopentadiene (CPD) with ethylene using commercially available 2nd gen. Grubbs metathesis catalysts (1-G2) gives 1,3-butadiene (BD) and 1,4-pentadiene (2) (and 1,4-cyclohexadiene (3)) with reasonable yields (up to 24 % (BD) and 67 % (2+3) at 73 % CPD conversion) at 1?5 mol % catalyst loading in toluene solution (5 V% CPD, 10 bar, RT) in an equilibrium reaction. The ROCM of CPD with cis-butene diol diacetate (4) using 1.00 – 0.05 mol % of 3rd gen. Grubbs (1-G3) or 2nd gen. Hoveyda-Grubbs (1-HG2) catalysts loading gives hexa-2,4-diene-1,6-diyl diacetate (5), which is a precursor of 1,6-hexanediol (an intermediate in polyurethane, polyester and polyol synthesis) and hepta-2,5-diene-1,7-diyl diacetate (6) in good yield (up to 68 % or TON: 1180). Thus, convenient and selective synthetic procedures are revealed by ROCM of CPD with ethylene and 4 leading to BD and 1,6-hexanediol precursor, respectively, as key components of commercial intermediates of high-performance materials.

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 246047-72-3, help many people in the next few years., Synthetic Route of 246047-72-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI