A new application about 15746-57-3

Do you like my blog? If you like, you can also browse other articles about this kind. HPLC of Formula: C20H16Cl2N4Ru. Thanks for taking the time to read the blog about 15746-57-3

In an article, published in an article, once mentioned the application of 15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II),molecular formula is C20H16Cl2N4Ru, is a conventional compound. this article was the specific content is as follows.HPLC of Formula: C20H16Cl2N4Ru

This paper discusses the synthesis of two carbon-based pyridine ligands of fullerene pyrrolidine pyridine (C60-py) and multi-walled carbon nanotube pyrrolidine pyridine (MWCNT-py) via 1,3-dipolar cycloaddition. The two complexes, C60-Ru and MWCNT-Ru, were synthesized by ligand substitution in the presence of NH4PF6, and Ru(ii)(bpy)2Cl2 was used as a reaction precursor. Both complexes were characterized by mass spectroscopy (MS), elemental analysis, nuclear magnetic resonance (NMR) spectroscopy, infrared spectroscopy (IR), ultraviolet/visible spectroscopy (UV-VIS) spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and cyclic voltammetry (CV). The results showed that the substitution way of C 60-py is different from that of MWCNT-py. The C60-py and a NH3 replaced a Cl- and a bipyridine in Ru(ii)(bpy) 2Cl2 to produce a five-coordinate complex of [Ru(bpy)(NH3)(C60-py)Cl]PF6, whereas MWCNT-py replaced a Cl- to generate a six-coordinate complex of [Ru(bpy) 2(MWCNT-py)Cl]PF6. The cyclic voltammetry study showed that the electron-withdrawing ability was different for C60 and MWCNT. The C60 showed a relatively stronger electron-withdrawing effect with respect to MWCNT. The Royal Society of Chemistry 2011.

Do you like my blog? If you like, you can also browse other articles about this kind. HPLC of Formula: C20H16Cl2N4Ru. Thanks for taking the time to read the blog about 15746-57-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI