A new application about 10049-08-8

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Computed Properties of Cl3Ru. In my other articles, you can also check out more blogs about 10049-08-8

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 10049-08-8, Name is Ruthenium(III) chloride, molecular formula is Cl3Ru. In a Article,once mentioned of 10049-08-8, Computed Properties of Cl3Ru

Red electrophosphorescence from light-emitting devices based on a ruthenium(II) complex [Ru(4,7-Ph2-phen)3] 2+-doped wide-band-gap semiconductive polymers, e.g., poly(vinylcarbazole) (PVK), polydihexyl-fluorene (PF), and ladder-like polyphenylene (LPPP), as the emitting layer are reported. These polymers show the short-wavelength electroluminescence emission peaking ranged from 410 to 490 nm, which overlaps well with the absorption band of [Ru(4,7-Ph 2-phen)3]2+; however, very efficient energy transfer was investigated in the PVK system, likely due to relative long excited-state lifetimes of PVK than that of PF and LPPP and good chemical compatibility of [Ru(4,7-Ph2-phen)3]2+ with PVK. The EL spectra show the characteristic spectrum of [Ru(4,7-Ph 2-phen)3]2+, with a peak at 612 nm and CIE of (0.62, 0.37) which is comparable with standard red color. The optimized device ITO/PVK 5 wt % [Ru(4,7-Ph2-phen)3]2+/PBD/ Alq3/LiF/Al shows the maximum luminance efficiency and power efficiency of 8.6 cd/A and 2.1 lm/W, respectively.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Computed Properties of Cl3Ru. In my other articles, you can also check out more blogs about 10049-08-8

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI