Discovery of 15746-57-3

If you are hungry for even more, make sure to check my other article about 15746-57-3. Synthetic Route of 15746-57-3

Synthetic Route of 15746-57-3, Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 15746-57-3, C20H16Cl2N4Ru. A document type is Article, introducing its new discovery.

A new family of ruthenium(II) complexes with sterically expansive ligands for targeting DNA defects was prepared, and their luminescent responses to base pair mismatches and/or abasic sites were investigated. Design of the complexes sought to combine the mismatch specificity of sterically expansive metalloinsertors, such as [Rh(bpy)2(chrysi)]3+ (chrysi = chrysene-5,6-quinone diimine), and the light switch behavior of [Ru(bpy) 2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine). In one approach, complexes bearing analogues of chrysi incorporating hydrogen-bonding functionality similar to dppz were synthesized. While the complexes show luminescence only at low temperatures (77 K), competition experiments with [Ru(bpy)2(dppz)]2+ at ambient temperatures reveal that the chrysi derivatives preferentially bind DNA mismatches. In another approach, various substituents were introduced onto the dppz ligand to increase its steric bulk for mismatch binding while maintaining planarity. Steady state luminescence and luminescence lifetime measurements reveal that these dppz derivative complexes behave as DNA “light switches” but that the selectivity in binding and luminescence with mismatched/abasic versus well-matched DNA is not high. In all cases, luminescence depends sensitively upon structural perturbations to the dppz ligand.

If you are hungry for even more, make sure to check my other article about 15746-57-3. Synthetic Route of 15746-57-3

Reference:
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI