Top Picks: new discover of 246047-72-3

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.SDS of cas: 246047-72-3, you can also check out more blogs about246047-72-3

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, molecular formula is C46H65Cl2N2PRu. In a Article£¬once mentioned of 246047-72-3, SDS of cas: 246047-72-3

Stereoselective synthesis of the C13-C28 subunit of (-)-laulimalide utilizing an alpha-chlorosulfide intermediate

A stereoselective route to the C13-C28 subunit of (-)-laulimalide is described. l-Tartaric acid is the source of the hydroxy groups at C19 and C20. An alpha-chlorosulfide is employed as the key intermediate for the creation of the C17-C18 bond and the C16-C17 double bond was introduced using the Mislow-Braverman rearrangement and Hutchin’s dexoxygenation with concomitant double bond transposition reaction. The C15 and C23 stereogenic centers were created using catalytic asymmetric reactions. The trisubstituted and trans-disubstituted alkenes were created stereoselectively by taking advantage of ring-closing metathesis and the Julia-Kocienski olefination reaction, respectively. Georg Thieme Verlag Stuttgart, New York.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.SDS of cas: 246047-72-3, you can also check out more blogs about246047-72-3

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI