A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer, molecular formula is C12H12Cl4Ru2. In a Article£¬once mentioned of 37366-09-9, category: ruthenium-catalysts
Synthesis, characterisation and theoretical studies on some piano-stool ruthenium and rhodium complexes containing substituted phenyl imidazole ligands
Reactions of the chloro-bridged arene ruthenium complexes [{(eta6-arene)RuCl(mu-Cl}2] (eta6-arene = benzene, p-cymene) and structurally analogous rhodium complex [{(eta5-C5Me5)RhCl(mu-Cl}2] with imidazole based ligands viz., 1-(4-nitro-phenyl)-imidazole (NOPI), 1-(4-formylphenyl)-imidazole (FPI) and 1-(4-hydroxyphenyl)-imidazole (HPI) have been investigated. The resulting complexes have been characterised by elemental analyses, IR, 1H and 13C NMR, electronic absorption and emission spectral studies. Crystal structure of the representative complex [(eta5-C5Me5)RhCl2(NOPI)] has been determined crystallographically. Geometrical optimisation on the complexes have been performed using exchange correlation functional B3LYP. Optimised bond lengths and angles of the complexes have been found to be in good agreement with our earlier reports and single crystal X-ray data of the complex [(eta5-C5Me5)RhCl2(NOPI)].
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.category: ruthenium-catalysts. In my other articles, you can also check out more blogs about 37366-09-9
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI