If you are hungry for even more, make sure to check my other article about 246047-72-3. Electric Literature of 246047-72-3
Electric Literature of 246047-72-3. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 246047-72-3, Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium
Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands
A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy 3)2Cl2Ru=CHPh or (PCy3)Cl 2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)-and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2- ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.
If you are hungry for even more, make sure to check my other article about 246047-72-3. Electric Literature of 246047-72-3
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI